Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Structural and Functional Analysis of G Protein–Coupled Receptor Kinase Inhibition by Paroxetine and a Rationally Designed Analog

Kristoff T. Homan, Emily Wu, Michael W. Wilson, Puja Singh, Scott D. Larsen and John J. G. Tesmer
Molecular Pharmacology February 2014, 85 (2) 237-248; DOI: https://doi.org/10.1124/mol.113.089631
Kristoff T. Homan
Life Sciences Institute and the Departments of Pharmacology and Biological Sciences (K.T.H., E.W., P.S., J.J.G.T.), and Vahlteich Medicinal Chemistry Core and the Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (M.W.W., S.D.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emily Wu
Life Sciences Institute and the Departments of Pharmacology and Biological Sciences (K.T.H., E.W., P.S., J.J.G.T.), and Vahlteich Medicinal Chemistry Core and the Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (M.W.W., S.D.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael W. Wilson
Life Sciences Institute and the Departments of Pharmacology and Biological Sciences (K.T.H., E.W., P.S., J.J.G.T.), and Vahlteich Medicinal Chemistry Core and the Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (M.W.W., S.D.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Puja Singh
Life Sciences Institute and the Departments of Pharmacology and Biological Sciences (K.T.H., E.W., P.S., J.J.G.T.), and Vahlteich Medicinal Chemistry Core and the Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (M.W.W., S.D.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott D. Larsen
Life Sciences Institute and the Departments of Pharmacology and Biological Sciences (K.T.H., E.W., P.S., J.J.G.T.), and Vahlteich Medicinal Chemistry Core and the Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (M.W.W., S.D.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John J. G. Tesmer
Life Sciences Institute and the Departments of Pharmacology and Biological Sciences (K.T.H., E.W., P.S., J.J.G.T.), and Vahlteich Medicinal Chemistry Core and the Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan (M.W.W., S.D.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading
Submit a Response to This Article
Compose eLetter

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests

Vertical Tabs

Jump to comment:

No eLetters have been published for this article.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 85 (2)
Molecular Pharmacology
Vol. 85, Issue 2
1 Feb 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Structural and Functional Analysis of G Protein–Coupled Receptor Kinase Inhibition by Paroxetine and a Rationally Designed Analog
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Inhibition of GRKs by Paroxetine Analogs

Kristoff T. Homan, Emily Wu, Michael W. Wilson, Puja Singh, Scott D. Larsen and John J. G. Tesmer
Molecular Pharmacology February 1, 2014, 85 (2) 237-248; DOI: https://doi.org/10.1124/mol.113.089631

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Inhibition of GRKs by Paroxetine Analogs

Kristoff T. Homan, Emily Wu, Michael W. Wilson, Puja Singh, Scott D. Larsen and John J. G. Tesmer
Molecular Pharmacology February 1, 2014, 85 (2) 237-248; DOI: https://doi.org/10.1124/mol.113.089631
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
  • Benzbromarone relaxes airway smooth muscle via BK activation
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics