Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Ah Receptor–Mediated Suppression of Liver Regeneration through NC-XRE–Driven p21Cip1 Expression

Daniel P. Jackson, Hui Li, Kristen A. Mitchell, Aditya D. Joshi and Cornelis J. Elferink
Molecular Pharmacology April 2014, 85 (4) 533-541; DOI: https://doi.org/10.1124/mol.113.089730
Daniel P. Jackson
Department of Pharmacology and Toxicology (D.P.J., A.D.J., C.J.E.) and Department of Pediatrics (H.L.), University of Texas Medical Branch, Galveston, Texas; and Department of Biological Sciences, Boise State University, Boise, Idaho (K.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hui Li
Department of Pharmacology and Toxicology (D.P.J., A.D.J., C.J.E.) and Department of Pediatrics (H.L.), University of Texas Medical Branch, Galveston, Texas; and Department of Biological Sciences, Boise State University, Boise, Idaho (K.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kristen A. Mitchell
Department of Pharmacology and Toxicology (D.P.J., A.D.J., C.J.E.) and Department of Pediatrics (H.L.), University of Texas Medical Branch, Galveston, Texas; and Department of Biological Sciences, Boise State University, Boise, Idaho (K.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aditya D. Joshi
Department of Pharmacology and Toxicology (D.P.J., A.D.J., C.J.E.) and Department of Pediatrics (H.L.), University of Texas Medical Branch, Galveston, Texas; and Department of Biological Sciences, Boise State University, Boise, Idaho (K.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cornelis J. Elferink
Department of Pharmacology and Toxicology (D.P.J., A.D.J., C.J.E.) and Department of Pediatrics (H.L.), University of Texas Medical Branch, Galveston, Texas; and Department of Biological Sciences, Boise State University, Boise, Idaho (K.A.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Previous studies in hepatocyte-derived cell lines and the whole liver established that the aryl hydrocarbon receptor (AhR) can disrupt G1-phase cell cycle progression following exposure to persistent AhR agonists, such as TCDD (dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin). Growth arrest was attributed to inhibition of G1-phase cyclin-dependent kinase 2 (CDK2) activity. The present study examined the effect of TCDD exposure on liver regeneration following 70% partial hepatectomy in mice lacking the Cip/Kip inhibitors p21Cip1 or p27Kip1 responsible for regulating CDK2 activity. Assessment of the regenerative process in wild-type, p21Cip1 knockout, and p27Kip1 knockout mice confirmed that TCDD-induced inhibition of liver regeneration is entirely dependent on p21Cip1 expression. Compared with wild-type mice, the absence of p21Cip1 expression completely abrogated the TCDD inhibition, and accelerated hepatocyte progression through G1 phase during the regenerative process. Analysis of the transcriptional response determined that increased p21Cip1 expression during liver regeneration involved an AhR-dependent mechanism. Chromatin immunoprecipitation studies revealed that p21Cip1 induction required AhR binding to the newly characterized nonconsensus xenobiotic response element, in conjunction with the tumor suppressor protein Kruppel-like factor 6 functioning as an AhR binding partner. The evidence also suggests that AhR functionality following partial hepatectomy is dependent on a p21Cip1-regulated signaling process, intimately linking AhR biology to the G1-phase cell cycle program.

Footnotes

    • Received September 19, 2013.
    • Accepted January 15, 2014.
  • This work was supported by the National Institutes of Health National Institute of Environmental Health Sciences [Grants R01-ES07800, P30-ES006676, and T32-ES007254].

  • dx.doi.org/10.1124/mol.113.089730.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 85 (4)
Molecular Pharmacology
Vol. 85, Issue 4
1 Apr 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ah Receptor–Mediated Suppression of Liver Regeneration through NC-XRE–Driven p21Cip1 Expression
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Functional Consequences of AhR-Mediated p21Cip1 Expression

Daniel P. Jackson, Hui Li, Kristen A. Mitchell, Aditya D. Joshi and Cornelis J. Elferink
Molecular Pharmacology April 1, 2014, 85 (4) 533-541; DOI: https://doi.org/10.1124/mol.113.089730

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Functional Consequences of AhR-Mediated p21Cip1 Expression

Daniel P. Jackson, Hui Li, Kristen A. Mitchell, Aditya D. Joshi and Cornelis J. Elferink
Molecular Pharmacology April 1, 2014, 85 (4) 533-541; DOI: https://doi.org/10.1124/mol.113.089730
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics