Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Microbiome-Derived Tryptophan Metabolites and Their Aryl Hydrocarbon Receptor-Dependent Agonist and Antagonist Activities

Un-Ho Jin, Syng-Ook Lee, Gautham Sridharan, Kyongbum Lee, Laurie A. Davidson, Arul Jayaraman, Robert S. Chapkin, Robert Alaniz and Stephen Safe
Molecular Pharmacology May 2014, 85 (5) 777-788; DOI: https://doi.org/10.1124/mol.113.091165
Un-Ho Jin
Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas (U.-H.J., S.-O.L., S.S.); Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Sciences Center (A.J., R.A.), Department of Veterinary Physiology and Pharmacology (S.S.), Department of Chemical Engineering (A.J.), and Department of Nutrition and Food Science (L.A.D., R.S.C.), Texas A&M University, College Station, Texas; Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea (S.-O.L.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (G.S., K.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Syng-Ook Lee
Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas (U.-H.J., S.-O.L., S.S.); Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Sciences Center (A.J., R.A.), Department of Veterinary Physiology and Pharmacology (S.S.), Department of Chemical Engineering (A.J.), and Department of Nutrition and Food Science (L.A.D., R.S.C.), Texas A&M University, College Station, Texas; Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea (S.-O.L.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (G.S., K.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gautham Sridharan
Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas (U.-H.J., S.-O.L., S.S.); Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Sciences Center (A.J., R.A.), Department of Veterinary Physiology and Pharmacology (S.S.), Department of Chemical Engineering (A.J.), and Department of Nutrition and Food Science (L.A.D., R.S.C.), Texas A&M University, College Station, Texas; Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea (S.-O.L.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (G.S., K.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kyongbum Lee
Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas (U.-H.J., S.-O.L., S.S.); Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Sciences Center (A.J., R.A.), Department of Veterinary Physiology and Pharmacology (S.S.), Department of Chemical Engineering (A.J.), and Department of Nutrition and Food Science (L.A.D., R.S.C.), Texas A&M University, College Station, Texas; Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea (S.-O.L.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (G.S., K.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laurie A. Davidson
Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas (U.-H.J., S.-O.L., S.S.); Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Sciences Center (A.J., R.A.), Department of Veterinary Physiology and Pharmacology (S.S.), Department of Chemical Engineering (A.J.), and Department of Nutrition and Food Science (L.A.D., R.S.C.), Texas A&M University, College Station, Texas; Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea (S.-O.L.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (G.S., K.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arul Jayaraman
Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas (U.-H.J., S.-O.L., S.S.); Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Sciences Center (A.J., R.A.), Department of Veterinary Physiology and Pharmacology (S.S.), Department of Chemical Engineering (A.J.), and Department of Nutrition and Food Science (L.A.D., R.S.C.), Texas A&M University, College Station, Texas; Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea (S.-O.L.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (G.S., K.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert S. Chapkin
Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas (U.-H.J., S.-O.L., S.S.); Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Sciences Center (A.J., R.A.), Department of Veterinary Physiology and Pharmacology (S.S.), Department of Chemical Engineering (A.J.), and Department of Nutrition and Food Science (L.A.D., R.S.C.), Texas A&M University, College Station, Texas; Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea (S.-O.L.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (G.S., K.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert Alaniz
Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas (U.-H.J., S.-O.L., S.S.); Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Sciences Center (A.J., R.A.), Department of Veterinary Physiology and Pharmacology (S.S.), Department of Chemical Engineering (A.J.), and Department of Nutrition and Food Science (L.A.D., R.S.C.), Texas A&M University, College Station, Texas; Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea (S.-O.L.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (G.S., K.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen Safe
Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas (U.-H.J., S.-O.L., S.S.); Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Sciences Center (A.J., R.A.), Department of Veterinary Physiology and Pharmacology (S.S.), Department of Chemical Engineering (A.J.), and Department of Nutrition and Food Science (L.A.D., R.S.C.), Texas A&M University, College Station, Texas; Department of Food Science and Technology, Keimyung University, Daegu, Republic of Korea (S.-O.L.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (G.S., K.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiota-derived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydrocarbon (Ah)–responsive. Activation of Ah-responsive genes demonstrated that tryptamine and indole 3-acetate were AHR agonists, whereas indole was an AHR antagonist that inhibited TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)–induced CYP1A1 expression. In contrast, the tryptophan metabolites exhibited minimal anti-inflammatory activities, whereas TCDD decreased phorbol ester-induced CXCR4 [chemokine (C-X-C motif) receptor 4] gene expression, and this response was AHR dependent. These results demonstrate that the tryptophan metabolites indole, tryptamine, and indole-3-acetate modulate AHR-mediated responses in CaCo-2 cells, and concentrations of indole that exhibit AHR antagonist activity (100–250 μM) are detected in the intestinal microbiome.

Footnotes

    • Received December 5, 2013.
    • Accepted February 21, 2014.
  • The work was supported by the National Institutes of Health National Cancer Institute [Grants R01-CA142697 (to S.S.), R21-A1095788 (to R.A. and A.J.), and NSF 084653 (to A.J.)]; and Texas AgriLife Research (to S.S.).

  • A.J., R.A., and S.S. are senior authors.

  • dx.doi.org/10.1124/mol.113.091165.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 85 (5)
Molecular Pharmacology
Vol. 85, Issue 5
1 May 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Microbiome-Derived Tryptophan Metabolites and Their Aryl Hydrocarbon Receptor-Dependent Agonist and Antagonist Activities
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Microbiome Tryptophan Metabolites Are AHR Ligands

Un-Ho Jin, Syng-Ook Lee, Gautham Sridharan, Kyongbum Lee, Laurie A. Davidson, Arul Jayaraman, Robert S. Chapkin, Robert Alaniz and Stephen Safe
Molecular Pharmacology May 1, 2014, 85 (5) 777-788; DOI: https://doi.org/10.1124/mol.113.091165

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Microbiome Tryptophan Metabolites Are AHR Ligands

Un-Ho Jin, Syng-Ook Lee, Gautham Sridharan, Kyongbum Lee, Laurie A. Davidson, Arul Jayaraman, Robert S. Chapkin, Robert Alaniz and Stephen Safe
Molecular Pharmacology May 1, 2014, 85 (5) 777-788; DOI: https://doi.org/10.1124/mol.113.091165
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Polypharmacology of CBL0137 in the African Trypanosome
  • Peptide-mediated differential signaling at GPR83
  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics