Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Direct Activation of β-Cell KATP Channels with a Novel Xanthine Derivative

Rene Raphemot, Daniel R. Swale, Prasanna K. Dadi, David A. Jacobson, Paige Cooper, Andrew P. Wojtovich, Sreedatta Banerjee, Colin G. Nichols and Jerod S. Denton
Molecular Pharmacology June 2014, 85 (6) 858-865; DOI: https://doi.org/10.1124/mol.114.091884
Rene Raphemot
Departments of Anesthesiology (R.R., D.R.S., S.B., J.S.D.), Pharmacology (R.R., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.) and Institutes of Chemical Biology (J.S.D.) and Global Health (J.S.D.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, University of Rochester Medical Center, Rochester, New York (A.P.W.); and Department of Cell Biology and Physiology (P.C., C.G.N.) and Center for the Investigation of Membrane Excitability Disorders (P.C., C.G.N.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel R. Swale
Departments of Anesthesiology (R.R., D.R.S., S.B., J.S.D.), Pharmacology (R.R., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.) and Institutes of Chemical Biology (J.S.D.) and Global Health (J.S.D.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, University of Rochester Medical Center, Rochester, New York (A.P.W.); and Department of Cell Biology and Physiology (P.C., C.G.N.) and Center for the Investigation of Membrane Excitability Disorders (P.C., C.G.N.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Prasanna K. Dadi
Departments of Anesthesiology (R.R., D.R.S., S.B., J.S.D.), Pharmacology (R.R., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.) and Institutes of Chemical Biology (J.S.D.) and Global Health (J.S.D.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, University of Rochester Medical Center, Rochester, New York (A.P.W.); and Department of Cell Biology and Physiology (P.C., C.G.N.) and Center for the Investigation of Membrane Excitability Disorders (P.C., C.G.N.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David A. Jacobson
Departments of Anesthesiology (R.R., D.R.S., S.B., J.S.D.), Pharmacology (R.R., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.) and Institutes of Chemical Biology (J.S.D.) and Global Health (J.S.D.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, University of Rochester Medical Center, Rochester, New York (A.P.W.); and Department of Cell Biology and Physiology (P.C., C.G.N.) and Center for the Investigation of Membrane Excitability Disorders (P.C., C.G.N.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paige Cooper
Departments of Anesthesiology (R.R., D.R.S., S.B., J.S.D.), Pharmacology (R.R., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.) and Institutes of Chemical Biology (J.S.D.) and Global Health (J.S.D.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, University of Rochester Medical Center, Rochester, New York (A.P.W.); and Department of Cell Biology and Physiology (P.C., C.G.N.) and Center for the Investigation of Membrane Excitability Disorders (P.C., C.G.N.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew P. Wojtovich
Departments of Anesthesiology (R.R., D.R.S., S.B., J.S.D.), Pharmacology (R.R., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.) and Institutes of Chemical Biology (J.S.D.) and Global Health (J.S.D.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, University of Rochester Medical Center, Rochester, New York (A.P.W.); and Department of Cell Biology and Physiology (P.C., C.G.N.) and Center for the Investigation of Membrane Excitability Disorders (P.C., C.G.N.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sreedatta Banerjee
Departments of Anesthesiology (R.R., D.R.S., S.B., J.S.D.), Pharmacology (R.R., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.) and Institutes of Chemical Biology (J.S.D.) and Global Health (J.S.D.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, University of Rochester Medical Center, Rochester, New York (A.P.W.); and Department of Cell Biology and Physiology (P.C., C.G.N.) and Center for the Investigation of Membrane Excitability Disorders (P.C., C.G.N.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Colin G. Nichols
Departments of Anesthesiology (R.R., D.R.S., S.B., J.S.D.), Pharmacology (R.R., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.) and Institutes of Chemical Biology (J.S.D.) and Global Health (J.S.D.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, University of Rochester Medical Center, Rochester, New York (A.P.W.); and Department of Cell Biology and Physiology (P.C., C.G.N.) and Center for the Investigation of Membrane Excitability Disorders (P.C., C.G.N.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jerod S. Denton
Departments of Anesthesiology (R.R., D.R.S., S.B., J.S.D.), Pharmacology (R.R., J.S.D.), and Molecular Physiology and Biophysics (P.K.D., D.A.J.) and Institutes of Chemical Biology (J.S.D.) and Global Health (J.S.D.), Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, University of Rochester Medical Center, Rochester, New York (A.P.W.); and Department of Cell Biology and Physiology (P.C., C.G.N.) and Center for the Investigation of Membrane Excitability Disorders (P.C., C.G.N.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

ATP-regulated potassium (KATP) channel complexes of inward rectifier potassium channel (Kir) 6.2 and sulfonylurea receptor (SUR) 1 critically regulate pancreatic islet β-cell membrane potential, calcium influx, and insulin secretion, and consequently, represent important drug targets for metabolic disorders of glucose homeostasis. The KATP channel opener diazoxide is used clinically to treat intractable hypoglycemia caused by excessive insulin secretion, but its use is limited by off-target effects due to lack of potency and selectivity. Some progress has been made in developing improved Kir6.2/SUR1 agonists from existing chemical scaffolds and compound screening, but there are surprisingly few distinct chemotypes that are specific for SUR1-containing KATP channels. Here we report the serendipitous discovery in a high-throughput screen of a novel activator of Kir6.2/SUR1: VU0071063 [7-(4-(tert-butyl)benzyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione]. The xanthine derivative rapidly and dose-dependently activates Kir6.2/SUR1 with a half-effective concentration (EC50) of approximately 7 μM, is more efficacious than diazoxide at low micromolar concentrations, directly activates the channel in excised membrane patches, and is selective for SUR1- over SUR2A-containing Kir6.1 or Kir6.2 channels, as well as Kir2.1, Kir2.2, Kir2.3, Kir3.1/3.2, and voltage-gated potassium channel 2.1. Finally, we show that VU0071063 activates native Kir6.2/SUR1 channels, thereby inhibiting glucose-stimulated calcium entry in isolated mouse pancreatic β cells. VU0071063 represents a novel tool/compound for investigating β-cell physiology, KATP channel gating, and a new chemical scaffold for developing improved activators with medicinal chemistry.

Footnotes

    • Received January 20, 2014.
    • Accepted March 19, 2014.
  • This work was supported by the Foundation for the National Institutes of Health Vector-Based Transmission Control program of the Grand Challenges in Global Health initiative [Grant PIER11VCTR]; the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases [Grants 1R01-DK082884 and 5R03-DK096122]; the National Institutes of Health National Heart, Lung, and Blood Institute [Grant R01-HL95010]; and the American Heart Association, Founder’s Affiliate Postdoctoral Fellowship [Grant 11POST7290028]. A.P.W. acknowledges support from Paul S. Brookes and Keith Nehrke (University of Rochester); work in whose laboratories is funded by the National Institutes of Health National Institute of General Medical Sciences [Grant R01-GM087483].

  • dx.doi.org/10.1124/mol.114.091884.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 85 (6)
Molecular Pharmacology
Vol. 85, Issue 6
1 Jun 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Direct Activation of β-Cell KATP Channels with a Novel Xanthine Derivative
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Discovery of a Xanthine-Based Kir6.2/SUR1 Activator

Rene Raphemot, Daniel R. Swale, Prasanna K. Dadi, David A. Jacobson, Paige Cooper, Andrew P. Wojtovich, Sreedatta Banerjee, Colin G. Nichols and Jerod S. Denton
Molecular Pharmacology June 1, 2014, 85 (6) 858-865; DOI: https://doi.org/10.1124/mol.114.091884

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Discovery of a Xanthine-Based Kir6.2/SUR1 Activator

Rene Raphemot, Daniel R. Swale, Prasanna K. Dadi, David A. Jacobson, Paige Cooper, Andrew P. Wojtovich, Sreedatta Banerjee, Colin G. Nichols and Jerod S. Denton
Molecular Pharmacology June 1, 2014, 85 (6) 858-865; DOI: https://doi.org/10.1124/mol.114.091884
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics