Abstract
The human ether-à-go-go–related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel, which is important for cardiac repolarization. Reduction of hERG current due to genetic mutations or drug interferences causes long QT syndrome, leading to cardiac arrhythmias and sudden death. To date, there is no effective therapeutic method to restore or enhance hERG channel function. Using cell biology and electrophysiological methods, we found that the muscarinic receptor agonist carbachol increased the expression and function of hERG, but not ether-à-go-go or Kv1.5 channels stably expressed in human embryonic kidney cells. The carbachol-mediated increase in hERG expression was abolished by the selective M3 antagonist 4-DAMP (1,1-dimethyl-4-diphenylacetoxypiperidinium iodide) but not by the M2 antagonist AF-DX 116 (11[[2-[(diethylamino)methyl]-1-piperidinyl]-acetyl]-5,11-dihydro-6H-pyrido[2,3-b] [1,4]benzodiazepine-6-one). Treatment of cells with carbachol reduced the hERG-ubiquitin interaction and slowed the rate of hERG degradation. We previously showed that the E3 ubiquitin ligase Nedd4-2 mediates degradation of hERG channels. Here, we found that disrupting the Nedd4-2 binding domain in hERG completely eliminated the effect of carbachol on hERG channels. Carbachol treatment enhanced the phosphorylation level, but not the total level, of Nedd4-2. Blockade of the protein kinase C (PKC) pathway abolished the carbachol-induced enhancement of hERG channels. Our data suggest that muscarinic activation increases hERG channel expression by phosphorylating Nedd4-2 via the PKC pathway.
Footnotes
- Received December 28, 2013.
- Accepted March 31, 2014.
This work was supported by the Canadian Institutes of Health Research [MOP 72911]; and the Natural Sciences and Engineering Research Council of Canada [RGPIN 384368-13] to S.Z., who is a recipient of the Heart and Stroke Foundation of Ontario Career Investigator Award.
- Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|