Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticles

Salmeterol’s Extreme β2 Selectivity Is Due to Residues in Both Extracellular Loops and Transmembrane Domains

Jillian G. Baker, Richard G. W. Proudman and Stephen J. Hill
Molecular Pharmacology January 2015, 87 (1) 103-120; DOI: https://doi.org/10.1124/mol.114.095364
Jillian G. Baker
Cell Signalling, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard G. W. Proudman
Cell Signalling, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen J. Hill
Cell Signalling, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Salmeterol is a long-acting β2-agonist, widely used as an inhaled treatment of asthma and chronic obstructive pulmonary disease. It has very high β2-affinity (log KD −8.95) and is very selective for the β2-adrenoceptor (1000-fold selectivity over the β1-adrenoceptor). This study used a mutagenesis approach to determine the exact amino acids in the human β2-adrenoceptor responsible for this very high selectivity. Wild-type β2- and β1-adrenoceptors, chimeric β2/β1-adrenoceptors, and receptors with single-point mutations were transfected into Chinese hamster ovary-K1 cells, and affinity and function were studied using [3H]CGP 12177 [(−)-4-(3-tert-butylamino-2-hydroxypropoxy)-benzimidazol-2-one] whole-cell binding and [3H]cAMP accumulation. Extracellular loop 3 (and specifically amino acid K305) had the largest single effect by reducing salmeterol’s affinity for the β2-adrenoceptor by 31-fold. H296 in transmembrane 6 also had a major effect (18-fold reduction in salmeterol affinity). Combining these, in the double mutant β2-H296K-K305D, reduced salmeterol’s affinity by 275-fold, to within 4-fold of that of the β1-adrenoceptor, without affecting the affinity or selectivity of other β2-agonists (salbutamol, formoterol, fenoterol, clenbuterol, or adrenaline). Another important amino acid was Y308 in transmembrane 7, although this also affected the affinity and selectivity of other agonists. F194 in extracellular loop 2 and R304 in extracellular loop 3 also had minor effects. None of these mutations (including the double mutant β2-H296K-K305D) affected the efficacy or duration of action of salmeterol. This suggests that the high affinity and selectivity of salmeterol are due to specific amino acids within the receptor itself, but that the duration of action is at least in part due to other factors, for example lipophilicity.

Footnotes

    • Received August 12, 2014.
    • Accepted October 16, 2014.
  • This work was supported by a Wellcome Trust Clinician Scientist Fellowship awarded to J.G.B. [Grant 073377/Z/03/Z] and the Biotechnology and Biological Sciences Research Council [Grant BB/C5077853/1].

  • dx.doi.org/10.1124/mol.114.095364.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 87 (1)
Molecular Pharmacology
Vol. 87, Issue 1
1 Jan 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Salmeterol’s Extreme β2 Selectivity Is Due to Residues in Both Extracellular Loops and Transmembrane Domains
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticles

Identification of Salmeterol’s High-Affinity Binding Sites

Jillian G. Baker, Richard G. W. Proudman and Stephen J. Hill
Molecular Pharmacology January 1, 2015, 87 (1) 103-120; DOI: https://doi.org/10.1124/mol.114.095364

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticles

Identification of Salmeterol’s High-Affinity Binding Sites

Jillian G. Baker, Richard G. W. Proudman and Stephen J. Hill
Molecular Pharmacology January 1, 2015, 87 (1) 103-120; DOI: https://doi.org/10.1124/mol.114.095364
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

Articles

  • Identification of ERα/β Heterodimer Selective Ligands
  • CAR ameliorates AKI-induced liver injury
  • Selectivity and Cysteine Dependence of RGS Inhibitors
Show more Articles

Article

  • Identification of ERα/β Heterodimer Selective Ligands
  • CAR ameliorates AKI-induced liver injury
  • Selectivity and Cysteine Dependence of RGS Inhibitors
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics