Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Development of a Highly Selective Allosteric Antagonist Radioligand for the Type 1 Cholecystokinin Receptor and Elucidation of Its Molecular Basis of Binding

Maoqing Dong, Ashton M. Vattelana, Polo C.-H. Lam, Andrew J. Orry, Ruben Abagyan, Arthur Christopoulos, Patrick M. Sexton, David R. Haines and Laurence J. Miller
Molecular Pharmacology January 2015, 87 (1) 130-140; DOI: https://doi.org/10.1124/mol.114.095430
Maoqing Dong
Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Maoqing Dong
Ashton M. Vattelana
Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Polo C.-H. Lam
Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew J. Orry
Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ruben Abagyan
Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arthur Christopoulos
Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick M. Sexton
Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Patrick M. Sexton
David R. Haines
Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laurence J. Miller
Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (M.D., L.J.M.); Department of Chemistry, Wellesley College, Wellesley, Massachusetts (A.M.V., D.R.H.); Molsoft LLC, La Jolla, California (P.C.-H.L., A.J.O., R.A.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (R.A.); and Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (A.C., P.M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Understanding the molecular basis of ligand binding to receptors provides insights useful for rational drug design. This work describes development of a new antagonist radioligand of the type 1 cholecystokinin receptor (CCK1R), (2-fluorophenyl)-2,3-dihydro-3-[(3-isoquinolinylcarbonyl)amino]-6-methoxy-2-oxo-l-H-indole-3-propanoate (T-0632), and exploration of the molecular basis of its binding. This radioligand bound specifically with high affinity within an allosteric pocket of CCK1R. T-0632 fully inhibited binding and action of CCK at this receptor, while exhibiting no saturable binding to the closely related type 2 cholecystokinin receptor (CCK2R). Chimeric CCK1R/CCK2R constructs were used to explore the molecular basis of T-0632 binding. Exchanging exonic regions revealed the functional importance of CCK1R exon 3, extending from the bottom of transmembrane segment (TM) 3 to the top of TM5, including portions of the intramembranous pocket as well as the second extracellular loop region (ECL2). However, CCK1R mutants in which each residue facing the pocket was changed to that present in CCK2R had no negative impact on T-0632 binding. Extending the chimeric approach to ECL2 established the importance of its C-terminal region, and site-directed mutagenesis of each nonconserved residue in this region revealed the importance of Ser208 at the top of TM5. A molecular model of T-0632-occupied CCK1R was consistent with these experimental determinants, also identifying Met121 in TM3 and Arg336 in TM6 as important. Although these residues are conserved in CCK2R, mutating them had a distinct impact on the two closely related receptors, suggesting differential orientation. This establishes the molecular basis of binding of a highly selective nonpeptidyl allosteric antagonist of CCK1R, illustrating differences in docking that extend beyond determinants attributable to distinct residues lining the intramembranous pocket in the two receptor subtypes.

Footnotes

    • Received August 13, 2014.
    • Accepted October 15, 2014.
  • This work was supported by the National Institutes of Health [Grant DK032878] and by the Mayo Clinic. A.C. and P.M.S. are Principal Research Fellows of the National Health and Medical Research Council of Australia.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • dx.doi.org/10.1124/mol.114.095430.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 87 (1)
Molecular Pharmacology
Vol. 87, Issue 1
1 Jan 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Development of a Highly Selective Allosteric Antagonist Radioligand for the Type 1 Cholecystokinin Receptor and Elucidation of Its Molecular Basis of Binding
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Allosteric CCK1R Antagonist Radioligand

Maoqing Dong, Ashton M. Vattelana, Polo C.-H. Lam, Andrew J. Orry, Ruben Abagyan, Arthur Christopoulos, Patrick M. Sexton, David R. Haines and Laurence J. Miller
Molecular Pharmacology January 1, 2015, 87 (1) 130-140; DOI: https://doi.org/10.1124/mol.114.095430

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Allosteric CCK1R Antagonist Radioligand

Maoqing Dong, Ashton M. Vattelana, Polo C.-H. Lam, Andrew J. Orry, Ruben Abagyan, Arthur Christopoulos, Patrick M. Sexton, David R. Haines and Laurence J. Miller
Molecular Pharmacology January 1, 2015, 87 (1) 130-140; DOI: https://doi.org/10.1124/mol.114.095430
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
  • TRPV3 and TRPV4 Channels Coassemble into Heterotetramers
  • Secretin Amino-Terminal Structure-Activity Relationships and Complementary Mutagenesis at the Site of Docking to the Secretin Receptor
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics