Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Insulin-Like Growth Factor-1 Receptor Signaling Increases the Invasive Potential of Human Epidermal Growth Factor Receptor 2–Overexpressing Breast Cancer Cells via Src-Focal Adhesion Kinase and Forkhead Box Protein M1

Eduardo Sanabria-Figueroa, Siobhan M. Donnelly, Kevin C. Foy, Meghan C. Buss, Robert C. Castellino, Elisavet Paplomata, Latonia Taliaferro-Smith, Pravin T.P. Kaumaya and Rita Nahta
Molecular Pharmacology February 2015, 87 (2) 150-161; DOI: https://doi.org/10.1124/mol.114.095380
Eduardo Sanabria-Figueroa
Departments of Pharmacology (E.S.-F., S.M.D., R.N.) and Hematology and Medical Oncology (E.P., L.T.-S., R.N.), School of Medicine, and Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences (E.S.-F., R.N.), and Winship Cancer Institute (R.C.C., E.P., L.T.-S., R.N.), Emory University, Atlanta, Georgia; Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia (M.C.B., R.C.C.); and Departments of Obstetrics and Gynecology and Microbiology, James Cancer Hospital, Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (K.C.F., P.T.P.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Siobhan M. Donnelly
Departments of Pharmacology (E.S.-F., S.M.D., R.N.) and Hematology and Medical Oncology (E.P., L.T.-S., R.N.), School of Medicine, and Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences (E.S.-F., R.N.), and Winship Cancer Institute (R.C.C., E.P., L.T.-S., R.N.), Emory University, Atlanta, Georgia; Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia (M.C.B., R.C.C.); and Departments of Obstetrics and Gynecology and Microbiology, James Cancer Hospital, Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (K.C.F., P.T.P.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kevin C. Foy
Departments of Pharmacology (E.S.-F., S.M.D., R.N.) and Hematology and Medical Oncology (E.P., L.T.-S., R.N.), School of Medicine, and Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences (E.S.-F., R.N.), and Winship Cancer Institute (R.C.C., E.P., L.T.-S., R.N.), Emory University, Atlanta, Georgia; Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia (M.C.B., R.C.C.); and Departments of Obstetrics and Gynecology and Microbiology, James Cancer Hospital, Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (K.C.F., P.T.P.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Meghan C. Buss
Departments of Pharmacology (E.S.-F., S.M.D., R.N.) and Hematology and Medical Oncology (E.P., L.T.-S., R.N.), School of Medicine, and Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences (E.S.-F., R.N.), and Winship Cancer Institute (R.C.C., E.P., L.T.-S., R.N.), Emory University, Atlanta, Georgia; Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia (M.C.B., R.C.C.); and Departments of Obstetrics and Gynecology and Microbiology, James Cancer Hospital, Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (K.C.F., P.T.P.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert C. Castellino
Departments of Pharmacology (E.S.-F., S.M.D., R.N.) and Hematology and Medical Oncology (E.P., L.T.-S., R.N.), School of Medicine, and Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences (E.S.-F., R.N.), and Winship Cancer Institute (R.C.C., E.P., L.T.-S., R.N.), Emory University, Atlanta, Georgia; Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia (M.C.B., R.C.C.); and Departments of Obstetrics and Gynecology and Microbiology, James Cancer Hospital, Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (K.C.F., P.T.P.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elisavet Paplomata
Departments of Pharmacology (E.S.-F., S.M.D., R.N.) and Hematology and Medical Oncology (E.P., L.T.-S., R.N.), School of Medicine, and Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences (E.S.-F., R.N.), and Winship Cancer Institute (R.C.C., E.P., L.T.-S., R.N.), Emory University, Atlanta, Georgia; Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia (M.C.B., R.C.C.); and Departments of Obstetrics and Gynecology and Microbiology, James Cancer Hospital, Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (K.C.F., P.T.P.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Latonia Taliaferro-Smith
Departments of Pharmacology (E.S.-F., S.M.D., R.N.) and Hematology and Medical Oncology (E.P., L.T.-S., R.N.), School of Medicine, and Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences (E.S.-F., R.N.), and Winship Cancer Institute (R.C.C., E.P., L.T.-S., R.N.), Emory University, Atlanta, Georgia; Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia (M.C.B., R.C.C.); and Departments of Obstetrics and Gynecology and Microbiology, James Cancer Hospital, Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (K.C.F., P.T.P.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pravin T.P. Kaumaya
Departments of Pharmacology (E.S.-F., S.M.D., R.N.) and Hematology and Medical Oncology (E.P., L.T.-S., R.N.), School of Medicine, and Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences (E.S.-F., R.N.), and Winship Cancer Institute (R.C.C., E.P., L.T.-S., R.N.), Emory University, Atlanta, Georgia; Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia (M.C.B., R.C.C.); and Departments of Obstetrics and Gynecology and Microbiology, James Cancer Hospital, Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (K.C.F., P.T.P.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rita Nahta
Departments of Pharmacology (E.S.-F., S.M.D., R.N.) and Hematology and Medical Oncology (E.P., L.T.-S., R.N.), School of Medicine, and Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences (E.S.-F., R.N.), and Winship Cancer Institute (R.C.C., E.P., L.T.-S., R.N.), Emory University, Atlanta, Georgia; Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia (M.C.B., R.C.C.); and Departments of Obstetrics and Gynecology and Microbiology, James Cancer Hospital, Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (K.C.F., P.T.P.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

This article has a correction. Please see:

  • Correction to “Insulin-Like Growth Factor-1 Receptor Signaling Increases the Invasive Potential of Human Epidermal Growth Factor Receptor 2–Overexpressing Breast Cancer Cells via Src-Focal Adhesion Kinase and Forkhead Box Protein M1” - December 01, 2020

Abstract

Resistance to the human epidermal growth factor receptor (HER2)–targeted antibody trastuzumab is a major clinical concern in the treatment of HER2-positive metastatic breast cancer. Increased expression or signaling from the insulin-like growth factor-1 receptor (IGF-1R) has been reported to be associated with trastuzumab resistance. However, the specific molecular and biologic mechanisms through which IGF-1R promotes resistance or disease progression remain poorly defined. In this study, we found that the major biologic effect promoted by IGF-1R was invasion, which was mediated by both Src-focal adhesion kinase (FAK) signaling and Forkhead box protein M1 (FoxM1). Cotargeting IGF-1R and HER2 using either IGF-1R antibodies or IGF-1R short hairpin RNA in combination with trastuzumab resulted in significant but modest growth inhibition. Reduced invasion was the most significant biologic effect achieved by cotargeting IGF-1R and HER2 in trastuzumab-resistant cells. Constitutively active Src blocked the anti-invasive effect of IGF-1R/HER2 cotargeted therapy. Furthermore, knockdown of FoxM1 blocked IGF-1–mediated invasion, and dual targeting of IGF-1R and HER2 reduced expression of FoxM1. Re-expression of FoxM1 restored the invasive potential of IGF-1R knockdown cells treated with trastuzumab. Overall, our results strongly indicate that therapeutic combinations that cotarget IGF-1R and HER2 may reduce the invasive potential of cancer cells that are resistant to trastuzumab through mechanisms that depend in part on Src and FoxM1.

Footnotes

    • Received August 12, 2014.
    • Accepted November 12, 2014.
  • E.S.-F. and S.M.D. contributed equally to this work.

  • This research was supported by the National Institutes of Health National Cancer Institute [Grant R01CA157754 (R.N.)] and the Glenn Family Breast Cancer Scholars Program (R.N.) at the Winship Cancer Institute. The Winship Cancer Institute is also supported by the National Institutes of Health National Cancer Institute [Grant P30CA138292].

  • dx.doi.org/10.1124/mol.114.095380.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 87 (2)
Molecular Pharmacology
Vol. 87, Issue 2
1 Feb 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Insulin-Like Growth Factor-1 Receptor Signaling Increases the Invasive Potential of Human Epidermal Growth Factor Receptor 2–Overexpressing Breast Cancer Cells via Src-Focal Adhesion Kinase and Forkhead Box Protein M1
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

IGF-1R–Mediated Invasion in HER2-Positive Cancer Cells

Eduardo Sanabria-Figueroa, Siobhan M. Donnelly, Kevin C. Foy, Meghan C. Buss, Robert C. Castellino, Elisavet Paplomata, Latonia Taliaferro-Smith, Pravin T.P. Kaumaya and Rita Nahta
Molecular Pharmacology February 1, 2015, 87 (2) 150-161; DOI: https://doi.org/10.1124/mol.114.095380

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

IGF-1R–Mediated Invasion in HER2-Positive Cancer Cells

Eduardo Sanabria-Figueroa, Siobhan M. Donnelly, Kevin C. Foy, Meghan C. Buss, Robert C. Castellino, Elisavet Paplomata, Latonia Taliaferro-Smith, Pravin T.P. Kaumaya and Rita Nahta
Molecular Pharmacology February 1, 2015, 87 (2) 150-161; DOI: https://doi.org/10.1124/mol.114.095380
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Action of Org 34167 on HCN channels
  • The effects of echinocystic acid on Kv7 channels
  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics