Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Potent Trypanocidal Curcumin Analogs Bearing a Monoenone Linker Motif Act on Trypanosoma brucei by Forming an Adduct with Trypanothione

Abdulsalam A.M. Alkhaldi, Darren J. Creek, Hasan Ibrahim, Dong-Hyun Kim, Neils B. Quashie, Karl E. Burgess, Chatchawan Changtam, Michael P. Barrett, Apichart Suksamrarn and Harry P. de Koning
Molecular Pharmacology March 2015, 87 (3) 451-464; DOI: https://doi.org/10.1124/mol.114.096016
Abdulsalam A.M. Alkhaldi
Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Darren J. Creek
Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hasan Ibrahim
Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dong-Hyun Kim
Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Neils B. Quashie
Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karl E. Burgess
Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chatchawan Changtam
Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael P. Barrett
Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Apichart Suksamrarn
Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Harry P. de Koning
Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

We have previously reported that curcumin analogs with a C7 linker bearing a C4-C5 olefinic linker with a single keto group at C3 (enone linker) display midnanomolar activity against the bloodstream form of Trypanosoma brucei. However, no clear indication of their mechanism of action or superior antiparasitic activity relative to analogs with the original di-ketone curcumin linker was apparent. To further investigate their utility as antiparasitic agents, we compare the cellular effects of curcumin and the enone linker lead compound 1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-one (AS-HK014) here. An AS-HK014–resitant line, trypanosomes adapted to AS-HK014 (TA014), was developed by in vitro exposure to the drug. Metabolomic analysis revealed that exposure to AS-HK014, but not curcumin, rapidly depleted glutathione and trypanothione in the wild-type line, although almost all other metabolites were unchanged relative to control. In TA014 cells, thiol levels were similar to untreated wild-type cells and not significantly depleted by AS-HK014. Adducts of AS-HK014 with both glutathione and trypanothione were identified in AS-HK014–exposed wild-type cells and reproduced by chemical reaction. However, adduct accumulation in sensitive cells was much lower than in resistant cells. TA014 cells did not exhibit any changes in sequence or protein levels of glutathione synthetase and γ-glutamylcysteine synthetase relative to wild-type cells. We conclude that monoenone curcuminoids have a different mode of action than curcumin, rapidly and specifically depleting thiol levels in trypanosomes by forming an adduct. This adduct may ultimately be responsible for the highly potent trypanocidal and antiparasitic activity of the monoenone curcuminoids.

Footnotes

    • Received September 19, 2014.
    • Accepted December 15, 2014.
  • A.A.M.A. and D.J.C. contributed equally to this manuscript.

  • This research was supported by the National Science and Technology Development Agency of Thailand, Center of Excellence for Innovation in Chemistry, and National Health and Medical Research Council of Australia and core funding from the Wellcome Trust to the Wellcome Trust Centre for Molecular Parasitology [Grant 085349].

  • dx.doi.org/10.1124/mol.114.096016.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 87 (3)
Molecular Pharmacology
Vol. 87, Issue 3
1 Mar 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Potent Trypanocidal Curcumin Analogs Bearing a Monoenone Linker Motif Act on Trypanosoma brucei by Forming an Adduct with Trypanothione
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Mode of Action of Trypanocidal Action of Curcumin Analogs

Abdulsalam A.M. Alkhaldi, Darren J. Creek, Hasan Ibrahim, Dong-Hyun Kim, Neils B. Quashie, Karl E. Burgess, Chatchawan Changtam, Michael P. Barrett, Apichart Suksamrarn and Harry P. de Koning
Molecular Pharmacology March 1, 2015, 87 (3) 451-464; DOI: https://doi.org/10.1124/mol.114.096016

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Mode of Action of Trypanocidal Action of Curcumin Analogs

Abdulsalam A.M. Alkhaldi, Darren J. Creek, Hasan Ibrahim, Dong-Hyun Kim, Neils B. Quashie, Karl E. Burgess, Chatchawan Changtam, Michael P. Barrett, Apichart Suksamrarn and Harry P. de Koning
Molecular Pharmacology March 1, 2015, 87 (3) 451-464; DOI: https://doi.org/10.1124/mol.114.096016
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
  • Pharmacological Characterization of the Human α6β4 nAChR
  • Allosteric Modulation of Metabotropic Glutamate Receptor 1
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics