Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Exposure to Diethylstilbestrol during Pregnancy Modulates MicroRNA Expression Profile in Mothers and Fetuses Reflecting Oncogenic and Immunological Changes

Narendra P. Singh, Ikbal K. Abbas, Martine Menard, Udai P. Singh, Jiajia Zhang, Prakash Nagarkatti and Mitzi Nagarkatti
Molecular Pharmacology May 2015, 87 (5) 842-854; DOI: https://doi.org/10.1124/mol.114.096743
Narendra P. Singh
Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (N.P.S., I.K.A., M.M., U.P.S., P.N., M.N.) and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (J.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ikbal K. Abbas
Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (N.P.S., I.K.A., M.M., U.P.S., P.N., M.N.) and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (J.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martine Menard
Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (N.P.S., I.K.A., M.M., U.P.S., P.N., M.N.) and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (J.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Udai P. Singh
Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (N.P.S., I.K.A., M.M., U.P.S., P.N., M.N.) and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (J.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jiajia Zhang
Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (N.P.S., I.K.A., M.M., U.P.S., P.N., M.N.) and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (J.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Prakash Nagarkatti
Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (N.P.S., I.K.A., M.M., U.P.S., P.N., M.N.) and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (J.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mitzi Nagarkatti
Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (N.P.S., I.K.A., M.M., U.P.S., P.N., M.N.) and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina (J.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Prenatal exposure to diethylstilbestrol (DES) is known to cause an increased susceptibility to a wide array of clinical disorders in humans. Previous studies from our laboratory demonstrated that prenatal exposure to DES induces thymic atrophy and apoptosis in the thymus. In the current study, we investigated if such effects on the thymus result from alterations in the expression of microRNA (miR). To that end, pregnant C57BL/6 mice who were exposed to DES and miR profiles in thymocytes of both the mother and fetuses on postnatal day 3 (gestation day 17) were studied. Of the 609 mouse miRs examined, we noted 59 altered miRs that were common for both mothers and fetuses, whereas 107 altered miRs were specific to mothers only and 101 altered miRs were specific to fetuses only. Upon further analyses in the fetuses, we observed that DES-mediated changes in miR expression may regulate genes involved in important functions, such as apoptosis, autophagy, toxicity, and cancer. Of the miRs that showed decreased expression following DES treatment, miR-18b and miR-23a were found to possess complementary sequences and binding affinity for 3′ untranslated regions of the Fas ligand (FasL) and Fas, respectively. Transfection studies confirmed that DES-mediated downregulation of miR-18b and miR-23a led to increased FasL and Fas expression. These data demonstrated that prenatal DES exposure can cause alterations in miRs, leading to changes in the gene expression, specifically, miR-mediated increased expression in FasL and Fas causing apoptosis and thymic atrophy.

Footnotes

    • Received November 6, 2014.
    • Accepted March 9, 2015.
  • This work was supported in part by National Institutes of Health National Center for Complementary and Alternative Medicine [P01-AT003961 and R01-AT006888], National Institute of Environment and Health Sciences [R01-ES019313], National Institute of Mental Health [R01-MH094755], and National Institute of General Medical Sciences [P20-GM103641]; Veterans Affairs Merit Award [BX001357]; and University of South Carolina ASPIRE 1 Grant [A011].

  • dx.doi.org/10.1124/mol.114.096743.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 87 (5)
Molecular Pharmacology
Vol. 87, Issue 5
1 May 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Exposure to Diethylstilbestrol during Pregnancy Modulates MicroRNA Expression Profile in Mothers and Fetuses Reflecting Oncogenic and Immunological Changes
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

MicroRNA Profile in Thymus of Prenatal Mice Post-DES Exposure

Narendra P. Singh, Ikbal K. Abbas, Martine Menard, Udai P. Singh, Jiajia Zhang, Prakash Nagarkatti and Mitzi Nagarkatti
Molecular Pharmacology May 1, 2015, 87 (5) 842-854; DOI: https://doi.org/10.1124/mol.114.096743

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

MicroRNA Profile in Thymus of Prenatal Mice Post-DES Exposure

Narendra P. Singh, Ikbal K. Abbas, Martine Menard, Udai P. Singh, Jiajia Zhang, Prakash Nagarkatti and Mitzi Nagarkatti
Molecular Pharmacology May 1, 2015, 87 (5) 842-854; DOI: https://doi.org/10.1124/mol.114.096743
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics