Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Investigation of the Fate of Type I Angiotensin Receptor after Biased Activation

Gyöngyi Szakadáti, András D. Tóth, Ilona Oláh, László Sándor Erdélyi, Tamas Balla, Péter Várnai, László Hunyady and András Balla
Molecular Pharmacology June 2015, 87 (6) 972-981; DOI: https://doi.org/10.1124/mol.114.097030
Gyöngyi Szakadáti
Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia–Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
András D. Tóth
Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia–Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ilona Oláh
Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia–Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
László Sándor Erdélyi
Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia–Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tamas Balla
Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia–Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Péter Várnai
Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia–Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
László Hunyady
Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia–Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
András Balla
Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary (G.S., A.D.T., I.O., L.S.E., P.V., L.H., A.B.), Magyar Tudományos Akadémia–Semmelweis Egyetem Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary (L.S.E., P.V., L.H., A.B.); and Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (T.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Biased agonism on the type I angiotensin receptor (AT1-R) can achieve different outcomes via activation of G protein–dependent and –independent cellular responses. In this study, we investigated whether the biased activation of AT1-R can lead to different regulation and intracellular processing of the receptor. We analyzed β-arrestin binding, endocytosis, and subsequent trafficking steps, such as early and late phases of recycling of AT1-R in human embryonic kidney 293 cells expressing wild-type or biased mutant receptors in response to different ligands. We used Renilla luciferase–tagged receptors and yellow fluorescent protein–tagged β-arrestin2, Rab5, Rab7, and Rab11 proteins in bioluminescence resonance energy transfer measurements to follow the fate of the receptor after stimulation. We found that not only is the signaling of the receptor different upon using selective ligands, but the fate within the cells is also determined by the type of the stimulation. β-arrestin binding and the internalization kinetics of the angiotensin II–stimulated AT1-R differed from those stimulated by the biased agonists. Similarly, angiotensin II–stimulated wild-type AT1-R showed differences compared with a biased mutant AT1-R (DRY/AAY AT1-R) with regards to β-arrestin binding and endocytosis. We found that the differences in the internalization kinetics of the receptor in response to biased agonist stimulation are due to the differences in plasma membrane phosphatidylinositol 4,5-bisphosphate depletion. Moreover, the stability of the β-arrestin binding is a major determinant of the later fate of the internalized AT1-R receptor.

Footnotes

    • Received November 11, 2014.
    • Accepted March 24, 2015.
  • This work was supported by the Hungarian Scientific Research Fund OTKA [NK100883 and K105006] and National Development Agency NFU TAMOP [4.2.2-08/1/KMR and 4-2.1/B-09/1/KMR-2010-0001]. A.B. was also supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. This research was supported in part by the Intramural Research Program of the National Institutes of Health (Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development).

  • dx.doi.org/10.1124/mol.114.097030.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • U.S. Government work not protected by U.S. copyright
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 87 (6)
Molecular Pharmacology
Vol. 87, Issue 6
1 Jun 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Investigation of the Fate of Type I Angiotensin Receptor after Biased Activation
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Fate of Biased Activated AT1 Receptor

Gyöngyi Szakadáti, András D. Tóth, Ilona Oláh, László Sándor Erdélyi, Tamas Balla, Péter Várnai, László Hunyady and András Balla
Molecular Pharmacology June 1, 2015, 87 (6) 972-981; DOI: https://doi.org/10.1124/mol.114.097030

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Fate of Biased Activated AT1 Receptor

Gyöngyi Szakadáti, András D. Tóth, Ilona Oláh, László Sándor Erdélyi, Tamas Balla, Péter Várnai, László Hunyady and András Balla
Molecular Pharmacology June 1, 2015, 87 (6) 972-981; DOI: https://doi.org/10.1124/mol.114.097030
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
  • Benzbromarone relaxes airway smooth muscle via BK activation
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics