Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Role of G Protein–Coupled Receptor Kinases 2 and 3 in μ-Opioid Receptor Desensitization and Internalization

Janet D. Lowe, Helen S. Sanderson, Alexandra E. Cooke, Mehrnoosh Ostovar, Elena Tsisanova, Sarah L. Withey, Charles Chavkin, Stephen M. Husbands, Eamonn Kelly, Graeme Henderson and Chris P. Bailey
Molecular Pharmacology August 2015, 88 (2) 347-356; DOI: https://doi.org/10.1124/mol.115.098293
Janet D. Lowe
School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (J.D.L., H.S.S., A.E.C., E.T., S.L.W., E.K., G.H.); Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington (C.C.); and Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (M.O., S.M.H., C.P.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Helen S. Sanderson
School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (J.D.L., H.S.S., A.E.C., E.T., S.L.W., E.K., G.H.); Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington (C.C.); and Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (M.O., S.M.H., C.P.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexandra E. Cooke
School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (J.D.L., H.S.S., A.E.C., E.T., S.L.W., E.K., G.H.); Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington (C.C.); and Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (M.O., S.M.H., C.P.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mehrnoosh Ostovar
School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (J.D.L., H.S.S., A.E.C., E.T., S.L.W., E.K., G.H.); Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington (C.C.); and Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (M.O., S.M.H., C.P.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elena Tsisanova
School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (J.D.L., H.S.S., A.E.C., E.T., S.L.W., E.K., G.H.); Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington (C.C.); and Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (M.O., S.M.H., C.P.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sarah L. Withey
School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (J.D.L., H.S.S., A.E.C., E.T., S.L.W., E.K., G.H.); Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington (C.C.); and Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (M.O., S.M.H., C.P.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles Chavkin
School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (J.D.L., H.S.S., A.E.C., E.T., S.L.W., E.K., G.H.); Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington (C.C.); and Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (M.O., S.M.H., C.P.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen M. Husbands
School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (J.D.L., H.S.S., A.E.C., E.T., S.L.W., E.K., G.H.); Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington (C.C.); and Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (M.O., S.M.H., C.P.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eamonn Kelly
School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (J.D.L., H.S.S., A.E.C., E.T., S.L.W., E.K., G.H.); Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington (C.C.); and Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (M.O., S.M.H., C.P.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Graeme Henderson
School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (J.D.L., H.S.S., A.E.C., E.T., S.L.W., E.K., G.H.); Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington (C.C.); and Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (M.O., S.M.H., C.P.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chris P. Bailey
School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom (J.D.L., H.S.S., A.E.C., E.T., S.L.W., E.K., G.H.); Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington (C.C.); and Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom (M.O., S.M.H., C.P.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

There is ongoing debate about the role of G protein–coupled receptor kinases (GRKs) in agonist-induced desensitization of the μ-opioid receptor (MOPr) in brain neurons. In the present paper, we have used a novel membrane-permeable, small-molecule inhibitor of GRK2 and GRK3, Takeda compound 101 (Cmpd101; 3-[[[4-methyl-5-(4-pyridyl)-4H-1,2,4-triazole-3-yl] methyl] amino]-N-[2-(trifuoromethyl) benzyl] benzamidehydrochloride), to study the involvement of GRK2/3 in acute agonist-induced MOPr desensitization. We observed that Cmpd101 inhibits the desensitization of the G protein–activated inwardly-rectifying potassium current evoked by receptor-saturating concentrations of methionine-enkephalin (Met-Enk), [d-Ala2, N-MePhe4, Gly-ol5]-enkephalin (DAMGO), endomorphin-2, and morphine in rat and mouse locus coeruleus (LC) neurons. In LC neurons from GRK3 knockout mice, Met-Enk–induced desensitization was unaffected, implying a role for GRK2 in MOPr desensitization. Quantitative analysis of the loss of functional MOPrs following acute agonist exposure revealed that Cmpd101 only partially reversed MOPr desensitization. Inhibition of extracellular signal–regulated kinase 1/2, protein kinase C, c-Jun N-terminal kinase, or GRK5 did not inhibit the Cmpd101-insensitive component of desensitization. In HEK 293 cells, Cmpd101 produced almost complete inhibition of DAMGO-induced MOPr phosphorylation at Ser375, arrestin translocation, and MOPr internalization. Our data demonstrate a role for GRK2 (and potentially also GRK3) in agonist-induced MOPr desensitization in the LC, but leave open the possibility that another, as yet unidentified, mechanism of desensitization also exists.

Footnotes

    • Received February 13, 2015.
    • Accepted May 26, 2015.
  • Aspects of this work were supported by grants from the Medical Research Council, UK [Grant MR/J013269/1] and the Biotechnology and Biological Sciences Research Council, UK [Grant BB/J003506/1] to E.K. and G.H.; from the Wellcome Trust, UK (Value in People award) to J.D.L. and C.P.B.; and from the US Public Health Service, National Institutes of Health National Institute on Drug Abuse [Grant R01-DA030074] to C.C.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • dx.doi.org/10.1124/mol.115.098293.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 88 (2)
Molecular Pharmacology
Vol. 88, Issue 2
1 Aug 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of G Protein–Coupled Receptor Kinases 2 and 3 in μ-Opioid Receptor Desensitization and Internalization
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Role of GRKs in MOPr Desensitization

Janet D. Lowe, Helen S. Sanderson, Alexandra E. Cooke, Mehrnoosh Ostovar, Elena Tsisanova, Sarah L. Withey, Charles Chavkin, Stephen M. Husbands, Eamonn Kelly, Graeme Henderson and Chris P. Bailey
Molecular Pharmacology August 1, 2015, 88 (2) 347-356; DOI: https://doi.org/10.1124/mol.115.098293

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Role of GRKs in MOPr Desensitization

Janet D. Lowe, Helen S. Sanderson, Alexandra E. Cooke, Mehrnoosh Ostovar, Elena Tsisanova, Sarah L. Withey, Charles Chavkin, Stephen M. Husbands, Eamonn Kelly, Graeme Henderson and Chris P. Bailey
Molecular Pharmacology August 1, 2015, 88 (2) 347-356; DOI: https://doi.org/10.1124/mol.115.098293
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics