Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Biased Agonism and Biased Allosteric Modulation at the CB1 Cannabinoid Receptor

Elham Khajehali, Daniel T. Malone, Michelle Glass, Patrick M. Sexton, Arthur Christopoulos and Katie Leach
Molecular Pharmacology August 2015, 88 (2) 368-379; DOI: https://doi.org/10.1124/mol.115.099192
Elham Khajehali
Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Melbourne, Australia (E.K., D.T.M., P.M.S., A.C., K.L.); and Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (M.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel T. Malone
Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Melbourne, Australia (E.K., D.T.M., P.M.S., A.C., K.L.); and Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (M.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michelle Glass
Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Melbourne, Australia (E.K., D.T.M., P.M.S., A.C., K.L.); and Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (M.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick M. Sexton
Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Melbourne, Australia (E.K., D.T.M., P.M.S., A.C., K.L.); and Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (M.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arthur Christopoulos
Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Melbourne, Australia (E.K., D.T.M., P.M.S., A.C., K.L.); and Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (M.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katie Leach
Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Melbourne, Australia (E.K., D.T.M., P.M.S., A.C., K.L.); and Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (M.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

CB1 cannabinoid receptors (CB1Rs) are attractive therapeutic targets for numerous central nervous system disorders. However, clinical application of cannabinoid ligands has been hampered owing to their adverse on-target effects. Ligand-biased signaling from, and allosteric modulation of, CB1Rs offer pharmacological approaches that may enable the development of improved CB1R drugs, through modulation of only therapeutically desirable CB1R signaling pathways. There is growing evidence that CB1Rs are subject to ligand-biased signaling and allosterism. Therefore, in the present study, we quantified ligand-biased signaling and allosteric modulation at CB1Rs. Cannabinoid agonists displayed distinct biased signaling profiles at CB1Rs. For instance, whereas 2-arachidonylglycerol and WIN55,212-2 [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone] showed little preference for inhibition of cAMP and phosphorylation of extracellular signal-regulated kinase 1/2 (pERK1/2), N-arachidonoylethanolamine (anandamide), methanandamide, CP55940 [2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol], and HU-210 [11-hydroxy-Δ8-THC-dimethylheptyl] were biased toward cAMP inhibition. The small-molecule allosteric modulator Org27569 [5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)ethyl]amide] displayed biased allosteric effects by blocking cAMP inhibition mediated by all cannabinoid ligands tested, at the same time having little or no effect on ERK1/2 phosphorylation mediated by a subset of these ligands. Org27569 also displayed negative binding cooperativity with [3H]SR141716A [5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide]; however, it had minimal effects on binding of cannabinoid agonists. Furthermore, we highlight the need to validate the reported allosteric effects of the endogenous ligands lipoxin A4 and pregnenolone at CB1Rs. Pregnenolone but not lipoxin A4 displaced [3H]SR141716A, but there was no functional interaction between either of these ligands and cannabinoid agonists. This study demonstrates an approach to validating and quantifying ligand-biased signaling and allosteric modulation at CB1Rs, revealing ligand-biased “fingerprints” that may ultimately allow the development of improved CB1R-targeted therapies.

Footnotes

    • Received March 24, 2015.
    • Accepted June 4, 2015.
  • This work was funded by a program grant of the National Health and Medical Research Council of Australia to P.M.S. and A.C [ID 1055134]. A.C. and P.M.S. are Principal Research Fellows of the National Health and Medical Research Council of Australia [IDs 1041875 and 1059015, respectively].

  • dx.doi.org/10.1124/mol.115.099192.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 88 (2)
Molecular Pharmacology
Vol. 88, Issue 2
1 Aug 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Biased Agonism and Biased Allosteric Modulation at the CB1 Cannabinoid Receptor
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Biased Signaling at CB1 Receptors

Elham Khajehali, Daniel T. Malone, Michelle Glass, Patrick M. Sexton, Arthur Christopoulos and Katie Leach
Molecular Pharmacology August 1, 2015, 88 (2) 368-379; DOI: https://doi.org/10.1124/mol.115.099192

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Biased Signaling at CB1 Receptors

Elham Khajehali, Daniel T. Malone, Michelle Glass, Patrick M. Sexton, Arthur Christopoulos and Katie Leach
Molecular Pharmacology August 1, 2015, 88 (2) 368-379; DOI: https://doi.org/10.1124/mol.115.099192
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • The binding site for KCI807 in the androgen receptor
  • Fatty acid amide hydrolase in cisplatin nephrotoxicity
  • eCB Signaling System in hiPSC-Derived Neuronal Cultures
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics