Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Rapid CommunicationMinireview—Exploring the biology of GPCRs: from in vitro to in vivo

A Molecular Pharmacologist’s Guide to G Protein–Coupled Receptor Crystallography

Chayne L. Piscitelli, James Kean, Chris de Graaf and Xavier Deupi
Molecular Pharmacology September 2015, 88 (3) 536-551; DOI: https://doi.org/10.1124/mol.115.099663
Chayne L. Piscitelli
Laboratory of Biomolecular Research, Department of Biology and Chemistry (C.L.P., X.D.), and Condensed Matter Theory Group, Department of Research with Neutrons and Muons (X.D.), Paul Scherrer Institute, Villigen, Switzerland; Heptares Therapeutics Ltd., Welwyn Garden City, United Kingdom (J.K.); and Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University of Amsterdam, Amsterdam, The Netherlands (C.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James Kean
Laboratory of Biomolecular Research, Department of Biology and Chemistry (C.L.P., X.D.), and Condensed Matter Theory Group, Department of Research with Neutrons and Muons (X.D.), Paul Scherrer Institute, Villigen, Switzerland; Heptares Therapeutics Ltd., Welwyn Garden City, United Kingdom (J.K.); and Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University of Amsterdam, Amsterdam, The Netherlands (C.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chris de Graaf
Laboratory of Biomolecular Research, Department of Biology and Chemistry (C.L.P., X.D.), and Condensed Matter Theory Group, Department of Research with Neutrons and Muons (X.D.), Paul Scherrer Institute, Villigen, Switzerland; Heptares Therapeutics Ltd., Welwyn Garden City, United Kingdom (J.K.); and Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University of Amsterdam, Amsterdam, The Netherlands (C.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xavier Deupi
Laboratory of Biomolecular Research, Department of Biology and Chemistry (C.L.P., X.D.), and Condensed Matter Theory Group, Department of Research with Neutrons and Muons (X.D.), Paul Scherrer Institute, Villigen, Switzerland; Heptares Therapeutics Ltd., Welwyn Garden City, United Kingdom (J.K.); and Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems, VU University of Amsterdam, Amsterdam, The Netherlands (C.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Visual Overview

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

G protein–coupled receptor (GPCR) structural biology has progressed dramatically in the last decade. There are now over 120 GPCR crystal structures deposited in the Protein Data Bank of 32 different receptors from families scattered across the phylogenetic tree, including class B, C, and Frizzled GPCRs. These structures have been obtained in combination with a wide variety of ligands and captured in a range of conformational states. This surge in structural knowledge has enlightened research into the molecular recognition of biologically active molecules, the mechanisms of receptor activation, the dynamics of functional selectivity, and fueled structure-based drug design efforts for GPCRs. Here we summarize the innovations in both protein engineering/molecular biology and crystallography techniques that have led to these advances in GPCR structural biology and discuss how they may influence the resulting structural models. We also provide a brief molecular pharmacologist’s guide to GPCR X-ray crystallography, outlining some key aspects in the process of structure determination, with the goal to encourage noncrystallographers to interrogate structures at the molecular level. Finally, we show how chemogenomics approaches can be used to marry the wealth of existing receptor pharmacology data with the expanding repertoire of structures, providing a deeper understanding of the mechanistic details of GPCR function.

Footnotes

    • Received April 27, 2015.
    • Accepted July 7, 2015.
  • C.L.P. and J.K. contributed equally to this work.

  • This work was supported by the Swiss National Science Foundation [Grant 146520] and by COST Action GLISTEN [CM1207]; J.K. is an employee of Heptares Therapeutics Ltd, which is a wholly owned subsidiary of the Sosei Group Corporation.

  • dx.doi.org/10.1124/mol.115.099663.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 88 (3)
Molecular Pharmacology
Vol. 88, Issue 3
1 Sep 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Molecular Pharmacologist’s Guide to G Protein–Coupled Receptor Crystallography
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationMinireview—Exploring the biology of GPCRs: from in vitro to in vivo

Molecular Pharmacologist’s Guide to GPCR Crystallography

Chayne L. Piscitelli, James Kean, Chris de Graaf and Xavier Deupi
Molecular Pharmacology September 1, 2015, 88 (3) 536-551; DOI: https://doi.org/10.1124/mol.115.099663

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationMinireview—Exploring the biology of GPCRs: from in vitro to in vivo

Molecular Pharmacologist’s Guide to GPCR Crystallography

Chayne L. Piscitelli, James Kean, Chris de Graaf and Xavier Deupi
Molecular Pharmacology September 1, 2015, 88 (3) 536-551; DOI: https://doi.org/10.1124/mol.115.099663
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Visual Overview
    • Abstract
    • Introduction
    • Molecular Biology Approaches to Facilitate GPCR Crystallography
    • GPCR X-Ray Structure Determination
    • Complementing GPCR Structural Chemogenomics with Molecular Pharmacology Data
    • Conclusion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Model Organisms in GPCR Research
  • GPCR Multimerization
  • Climate Change in GPCR Drug Discovery?
Show more Minireview—Exploring the biology of GPCRs: from in vitro to in vivo

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics