Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity

Rui Xiong, Wenbo Zhou, David Siegel, Russell R. A. Kitson, Curt R. Freed, Christopher J. Moody and David Ross
Molecular Pharmacology December 2015, 88 (6) 1045-1054; DOI: https://doi.org/10.1124/mol.115.101451
Rui Xiong
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (R.X., D.S., D.R.), and Department of Medicine, Division of Clinical Pharmacology and Toxicology (W.Z., C.R.F.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and School of Chemistry, University of Nottingham, Nottingham, United Kingdom (R.R.A.K., C.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wenbo Zhou
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (R.X., D.S., D.R.), and Department of Medicine, Division of Clinical Pharmacology and Toxicology (W.Z., C.R.F.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and School of Chemistry, University of Nottingham, Nottingham, United Kingdom (R.R.A.K., C.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Siegel
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (R.X., D.S., D.R.), and Department of Medicine, Division of Clinical Pharmacology and Toxicology (W.Z., C.R.F.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and School of Chemistry, University of Nottingham, Nottingham, United Kingdom (R.R.A.K., C.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Russell R. A. Kitson
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (R.X., D.S., D.R.), and Department of Medicine, Division of Clinical Pharmacology and Toxicology (W.Z., C.R.F.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and School of Chemistry, University of Nottingham, Nottingham, United Kingdom (R.R.A.K., C.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Curt R. Freed
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (R.X., D.S., D.R.), and Department of Medicine, Division of Clinical Pharmacology and Toxicology (W.Z., C.R.F.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and School of Chemistry, University of Nottingham, Nottingham, United Kingdom (R.R.A.K., C.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher J. Moody
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (R.X., D.S., D.R.), and Department of Medicine, Division of Clinical Pharmacology and Toxicology (W.Z., C.R.F.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and School of Chemistry, University of Nottingham, Nottingham, United Kingdom (R.R.A.K., C.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Ross
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (R.X., D.S., D.R.), and Department of Medicine, Division of Clinical Pharmacology and Toxicology (W.Z., C.R.F.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; and School of Chemistry, University of Nottingham, Nottingham, United Kingdom (R.R.A.K., C.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

A potential cause of neurodegenerative diseases, including Parkinson’s disease (PD), is protein misfolding and aggregation that in turn leads to neurotoxicity. Targeting Hsp90 is an attractive strategy to halt neurodegenerative diseases, and benzoquinone ansamycin (BQA) Hsp90 inhibitors such as geldanamycin (GA) and 17-(allylamino)-17-demethoxygeldanamycin have been shown to be beneficial in mutant A53T α-synuclein PD models. However, current BQA inhibitors result in off-target toxicities via redox cycling and/or arylation of nucleophiles at the C19 position. We developed novel 19-substituted BQA (19BQA) as a means to prevent arylation. In this study, our data demonstrated that 19-phenyl-GA, a lead 19BQA in the GA series, was redox stable and exhibited little toxicity relative to its parent quinone GA in human dopaminergic SH-SY5Y cells as examined by oxygen consumption, trypan blue, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), and apoptosis assays. Meanwhile, 19-phenyl-GA retained the ability to induce autophagy and potentially protective heat shock proteins (HSPs) such as Hsp70 and Hsp27. We found that transduction of A53T, but not wild type (WT) α-synuclein, induced toxicity in SH-SY5Y cells. 19-Phenyl-GA decreased oligomer formation and toxicity of A53T α-synuclein in transduced cells. Mechanistic studies indicated that mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase signaling was activated by A53T but not WT α-synuclein, and 19-phenyl-GA decreased mTOR activation that may be associated with A53T α-synuclein toxicity. In summary, our results indicate that 19BQAs such as 19-phenyl-GA may provide a means to modulate protein-handling systems including HSPs and autophagy, thereby reducing the aggregation and toxicity of proteins such as mutant A53T α-synuclein.

Footnotes

    • Received August 20, 2015.
    • Accepted September 16, 2015.
  • This work was supported by the National Institutes of Health [Grants R01ES018943 and CA51210 (to D.R.)] and the Parkinson’s Disease Society UK (to C.J.M.).

  • D.S., R.R.A.K., C.J.M., D.R., and the University of Colorado have a patent interest in 19-substituted benzoquinone ansamycins.

  • Preliminary data from this work were presented in part at the following meeting: Xiong R, Zhou W, Siegel D, Kitson RAR, Freed CR, Moddy CJ, Ross D (2015) A novel Hsp90 inhibitor activates compensatory heat shock protein responses and autophagy and alleviates mutant A53T alpha synuclein toxicity. Society of Toxicology Annual Meeting; 2015 March 22–26; San Diego, CA.

  • dx.doi.org/10.1124/mol.115.101451.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 88 (6)
Molecular Pharmacology
Vol. 88, Issue 6
1 Dec 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

A Novel Hsp90 Inhibitor Alleviates A53T α-Synuclein Toxicity

Rui Xiong, Wenbo Zhou, David Siegel, Russell R. A. Kitson, Curt R. Freed, Christopher J. Moody and David Ross
Molecular Pharmacology December 1, 2015, 88 (6) 1045-1054; DOI: https://doi.org/10.1124/mol.115.101451

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

A Novel Hsp90 Inhibitor Alleviates A53T α-Synuclein Toxicity

Rui Xiong, Wenbo Zhou, David Siegel, Russell R. A. Kitson, Curt R. Freed, Christopher J. Moody and David Ross
Molecular Pharmacology December 1, 2015, 88 (6) 1045-1054; DOI: https://doi.org/10.1124/mol.115.101451
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics