Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Structural Basis for Inhibition of Human Autotaxin by Four Potent Compounds with Distinct Modes of Binding

Adam J. Stein, Gretchen Bain, Pat Prodanovich, Angelina M. Santini, Janice Darlington, Nina M. P. Stelzer, Ranjinder S. Sidhu, Jeffrey Schaub, Lance Goulet, Dave Lonergan, Imelda Calderon, Jilly F. Evans and John H. Hutchinson
Molecular Pharmacology December 2015, 88 (6) 982-992; DOI: https://doi.org/10.1124/mol.115.100404
Adam J. Stein
Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gretchen Bain
Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pat Prodanovich
Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Angelina M. Santini
Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Janice Darlington
Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nina M. P. Stelzer
Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ranjinder S. Sidhu
Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey Schaub
Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lance Goulet
Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dave Lonergan
Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Imelda Calderon
Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jilly F. Evans
Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John H. Hutchinson
Cayman Chemical Company, Ann Arbor, Michigan (A.J.S., N.M.P.S., R.S.S., J.S.); and PharmAkea, San Diego, California (G.B., P.P., A.M.S., J.D., L.G., D.L., I.C., J.F.E., J.H.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is a bioactive phospholipid that regulates diverse biological processes, including cell proliferation, migration, and survival/apoptosis, through the activation of a family of G protein–coupled receptors. The ATX-LPA pathway has been implicated in many pathologic conditions, including cancer, fibrosis, inflammation, cholestatic pruritus, and pain. Therefore, ATX inhibitors represent an attractive strategy for the development of therapeutics to treat a variety of diseases. Mouse and rat ATX have been crystallized previously with LPA or small-molecule inhibitors bound. Here, we present the crystal structures of human ATX in complex with four previously unpublished, structurally distinct ATX inhibitors. We demonstrate that the mechanism of inhibition of each compound reflects its unique interactions with human ATX. Our studies may provide a basis for the rational design of novel ATX inhibitors.

Footnotes

    • Received June 20, 2015.
    • Accepted September 11, 2015.
  • A.J.S. and G.B. contributed equally to this work

  • dx.doi.org/10.1124/mol.115.100404.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 88 (6)
Molecular Pharmacology
Vol. 88, Issue 6
1 Dec 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Structural Basis for Inhibition of Human Autotaxin by Four Potent Compounds with Distinct Modes of Binding
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Structural Basis for Inhibition of Human Autotaxin

Adam J. Stein, Gretchen Bain, Pat Prodanovich, Angelina M. Santini, Janice Darlington, Nina M. P. Stelzer, Ranjinder S. Sidhu, Jeffrey Schaub, Lance Goulet, Dave Lonergan, Imelda Calderon, Jilly F. Evans and John H. Hutchinson
Molecular Pharmacology December 1, 2015, 88 (6) 982-992; DOI: https://doi.org/10.1124/mol.115.100404

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Structural Basis for Inhibition of Human Autotaxin

Adam J. Stein, Gretchen Bain, Pat Prodanovich, Angelina M. Santini, Janice Darlington, Nina M. P. Stelzer, Ranjinder S. Sidhu, Jeffrey Schaub, Lance Goulet, Dave Lonergan, Imelda Calderon, Jilly F. Evans and John H. Hutchinson
Molecular Pharmacology December 1, 2015, 88 (6) 982-992; DOI: https://doi.org/10.1124/mol.115.100404
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics