Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Bumetanide Derivatives AqB007 and AqB011 Selectively Block the Aquaporin-1 Ion Channel Conductance and Slow Cancer Cell Migration

Mohamad Kourghi, Jinxin V. Pei, Michael L. De Ieso, Gary Flynn and Andrea J. Yool
Molecular Pharmacology January 2016, 89 (1) 133-140; DOI: https://doi.org/10.1124/mol.115.101618
Mohamad Kourghi
School of Medicine (M.K., J.V.P., M.L.D.I., A.J.Y.) and Institute for Photonics and Advanced Sensing (J.V.P., A.J.Y.), University of Adelaide, Adelaide, South Australia, Australia; and Spacefill Enterprises LLC, Oro Valley, Arizona (G.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jinxin V. Pei
School of Medicine (M.K., J.V.P., M.L.D.I., A.J.Y.) and Institute for Photonics and Advanced Sensing (J.V.P., A.J.Y.), University of Adelaide, Adelaide, South Australia, Australia; and Spacefill Enterprises LLC, Oro Valley, Arizona (G.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael L. De Ieso
School of Medicine (M.K., J.V.P., M.L.D.I., A.J.Y.) and Institute for Photonics and Advanced Sensing (J.V.P., A.J.Y.), University of Adelaide, Adelaide, South Australia, Australia; and Spacefill Enterprises LLC, Oro Valley, Arizona (G.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gary Flynn
School of Medicine (M.K., J.V.P., M.L.D.I., A.J.Y.) and Institute for Photonics and Advanced Sensing (J.V.P., A.J.Y.), University of Adelaide, Adelaide, South Australia, Australia; and Spacefill Enterprises LLC, Oro Valley, Arizona (G.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrea J. Yool
School of Medicine (M.K., J.V.P., M.L.D.I., A.J.Y.) and Institute for Photonics and Advanced Sensing (J.V.P., A.J.Y.), University of Adelaide, Adelaide, South Australia, Australia; and Spacefill Enterprises LLC, Oro Valley, Arizona (G.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Visual Overview

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

Aquaporins (AQPs) in the major intrinsic family of proteins mediate fluxes of water and other small solutes across cell membranes. AQP1 is a water channel, and under permissive conditions, a nonselective cation channel gated by cGMP. In addition to mediating fluid transport, AQP1 expression facilitates rapid cell migration in cell types including colon cancers and glioblastoma. Work here defines new pharmacological derivatives of bumetanide that selectively inhibit the ion channel, but not the water channel, activity of AQP1. Human AQP1 was analyzed in the Xenopus laevis oocyte expression system by two-electrode voltage clamp and optical osmotic swelling assays. The aquaporin ligand bumetanide derivative AqB011 was the most potent blocker of the AQP1 ion conductance (IC50 of 14 μM), with no effect on water channel activity (at up to 200 μM). The order of potency for inhibition of the ionic conductance was AqB011 > AqB007 >> AqB006 ≥ AqB001. Migration of human colon cancer (HT29) cells was assessed with a wound-closure assay in the presence of a mitotic inhibitor. AqB011 and AqB007 significantly reduced migration rates of AQP1-positive HT29 cells without affecting viability. The order of potency for AQP1 ion channel block matched the order for inhibition of cell migration, as well as in silico modeling of the predicted order of energetically favored binding. Docking models suggest that AqB011 and AqB007 interact with the intracellular loop D domain, a region involved in AQP channel gating. Inhibition of AQP1 ionic conductance could be a useful adjunct therapeutic approach for reducing metastasis in cancers that upregulate AQP1 expression.

Footnotes

    • Received September 3, 2015.
    • Accepted October 13, 2015.
  • This work was supported in part by the National Institutes of Health [Grant R01 GM059986] and a 2015 pilot grant from the Institute for Photonics and Advanced Sensing, University of Adelaide.

  • ↵1 M.K. and J.V.P. are co-first authors.

  • dx.doi.org/10.1124/mol.115.101618.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 89 (1)
Molecular Pharmacology
Vol. 89, Issue 1
1 Jan 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Bumetanide Derivatives AqB007 and AqB011 Selectively Block the Aquaporin-1 Ion Channel Conductance and Slow Cancer Cell Migration
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Inhibition of AQP1 Ion Channels

Mohamad Kourghi, Jinxin V. Pei, Michael L. De Ieso, Gary Flynn and Andrea J. Yool
Molecular Pharmacology January 1, 2016, 89 (1) 133-140; DOI: https://doi.org/10.1124/mol.115.101618

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Inhibition of AQP1 Ion Channels

Mohamad Kourghi, Jinxin V. Pei, Michael L. De Ieso, Gary Flynn and Andrea J. Yool
Molecular Pharmacology January 1, 2016, 89 (1) 133-140; DOI: https://doi.org/10.1124/mol.115.101618
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Visual Overview
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics