Abstract
Elucidating the mechanisms that modulate calcium channels via opioid receptor activation is fundamental to our understanding of both pain perception and how opioids modulate pain. Neuronal voltage-gated N-type calcium channels (Cav2.2) are inhibited by activation of G protein–coupled opioid receptors (ORs). However, inhibition of R-type (Cav2.3) channels by μ- or κ-ORs is poorly defined and has not been reported for δ-ORs. To investigate such interactions, we coexpressed human μ-, δ-, or κ-ORs with human Cav2.3 or Cav2.2 in human embryonic kidney 293 cells and measured depolarization-activated Ba2+ currents (IBa). Selective agonists of μ-, δ-, and κ-ORs inhibited IBa through Cav2.3 channels by 35%. Cav2.2 channels were inhibited to a similar extent by κ-ORs, but more potently (60%) via μ- and δ-ORs. Antagonists of δ- and κ-ORs potentiated IBa amplitude mediated by Cav2.3 and Cav2.2 channels. Consistent with G protein βγ (Gβγ) interaction, modulation of Cav2.2 was primarily voltage-dependent and transiently relieved by depolarizing prepulses. In contrast, Cav2.3 modulation was voltage-independent and unaffected by depolarizing prepulses. However, Cav2.3 inhibition was sensitive to pertussis toxin and to intracellular application of guanosine 5′-[β-thio]diphosphate trilithium salt and guanosine 5′-[γ-thio]triphosphate tetralithium salt. Coexpression of Gβγ-specific scavengers—namely, the carboxyl terminus of the G protein–coupled receptor kinase 2 or membrane-targeted myristoylated-phosducin—attenuated or abolished Cav2.3 modulation. Our study reveals the diversity of OR-mediated signaling at Cav2 channels and identifies neuronal Cav2.3 channels as potential targets for opioid analgesics. Their novel modulation is dependent on pre-existing OR activity and mediated by membrane-delimited Gβγ subunits in a voltage-independent manner.
Footnotes
- Received July 30, 2015.
- Accepted October 19, 2015.
↵1 Current affiliation: Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522 Australia. Email: djadams{at}uow.edu.au
This work was supported by a National Health and Medical Research Council project grant [Grant 1034642] and an Australian Research Council Discovery Project grant [Grant DP1093115]. D.J.A. is an Australian Research Council Australian Professorial Fellow.
↵This article has supplemental material available at molpharm.aspetjournals.org.
- Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|