Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Genomically Incorporated 5-Fluorouracil that Escapes UNG-Initiated Base Excision Repair Blocks DNA Replication and Activates Homologous Recombination

Amelia M. Huehls, Catherine J. Huntoon, Poorval M. Joshi, Carly A. Baehr, Jill M. Wagner, Xiaoxiao Wang, Marietta Y. Lee and Larry M. Karnitz
Molecular Pharmacology January 2016, 89 (1) 53-62; DOI: https://doi.org/10.1124/mol.115.100164
Amelia M. Huehls
Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Catherine J. Huntoon
Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Poorval M. Joshi
Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carly A. Baehr
Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jill M. Wagner
Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaoxiao Wang
Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marietta Y. Lee
Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Larry M. Karnitz
Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

5-Fluorouracil (5-FU) and its metabolite 5-fluorodeoxyuridine (FdUrd, floxuridine) are chemotherapy agents that are converted to 5-fluorodeoxyuridine monophosphate (FdUMP) and 5-fluorodeoxyuridine triphosphate (FdUTP). FdUMP inhibits thymidylate synthase and causes the accumulation of uracil in the genome, whereas FdUTP is incorporated by DNA polymerases as 5-FU in the genome; however, it remains unclear how either genomically incorporated U or 5-FU contributes to killing. We show that depletion of the uracil DNA glycosylase (UNG) sensitizes tumor cells to FdUrd. Furthermore, we show that UNG depletion does not sensitize cells to the thymidylate synthase inhibitor (raltitrexed), which induces uracil but not 5-FU accumulation, thus indicating that genomically incorporated 5-FU plays a major role in the antineoplastic effects of FdUrd. We also show that 5-FU metabolites do not block the first round of DNA synthesis but instead arrest cells at the G1/S border when cells again attempt replication and activate homologous recombination (HR). This arrest is not due to 5-FU lesions blocking DNA polymerase δ but instead depends, in part, on the thymine DNA glycosylase. Consistent with the activation of HR repair, disruption of HR sensitized cells to FdUrd, especially when UNG was disabled. These results show that 5-FU lesions that escape UNG repair activate HR, which promotes cell survival.

Footnotes

    • Received May 29, 2015.
    • Accepted October 21, 2015.
  • This work was supported by the National Institutes of Health [Grants GM72474, R01-GM031973, and R01-ES014737], the Mayo Clinic Ovarian Cancer SPORE [P50 CA136393], a grant from the Fred C. and Katherine Andersen Foundation, and a Mayo Clinic Eagles Pilot Grant.

  • dx.doi.org/10.1124/mol.115.100164.

  • Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 89 (1)
Molecular Pharmacology
Vol. 89, Issue 1
1 Jan 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Genomically Incorporated 5-Fluorouracil that Escapes UNG-Initiated Base Excision Repair Blocks DNA Replication and Activates Homologous Recombination
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

UNG Depletion Sensitizes to Floxuridine

Amelia M. Huehls, Catherine J. Huntoon, Poorval M. Joshi, Carly A. Baehr, Jill M. Wagner, Xiaoxiao Wang, Marietta Y. Lee and Larry M. Karnitz
Molecular Pharmacology January 1, 2016, 89 (1) 53-62; DOI: https://doi.org/10.1124/mol.115.100164

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

UNG Depletion Sensitizes to Floxuridine

Amelia M. Huehls, Catherine J. Huntoon, Poorval M. Joshi, Carly A. Baehr, Jill M. Wagner, Xiaoxiao Wang, Marietta Y. Lee and Larry M. Karnitz
Molecular Pharmacology January 1, 2016, 89 (1) 53-62; DOI: https://doi.org/10.1124/mol.115.100164
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics