Abstract
The sigma-1 receptor (σ-1R) is an endoplasmic reticulum resident chaperone protein involved in a plethora of cellular functions, and whose disruption has been implicated in a wide range of diseases. Genetic analysis has revealed two σ-1R mutants involved in neuromuscular disorders. A point mutation (E102Q) in the ligand-binding domain results in the juvenile form of amyotrophic lateral sclerosis (ALS16), and a 20 amino-acid deletion (Δ31–50) in the putative cytosolic domain leads to a form of distal hereditary motor neuropathy. We investigated the localization and functional properties of these mutants in cell lines using confocal imaging and electrophysiology. The σ-1R mutants exhibited a significant increase in mobility, aberrant localization, and enhanced block of the inwardly rectifying K+ channel Kir2.1, compared with the wild-type σ-1R. Thus, these σ-1R mutants have different functional properties that could contribute to their disease phenotypes.
Footnotes
- Received March 4, 2016.
- Accepted July 11, 2016.
This work was supported by the Canadian Institutes of Health Research [Grant MOP-79360], and the Natural Sciences and Engineering Research Council of Canada [Grant 298381-2010].
- Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|