Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Lack of Influence of Substrate on Ligand Interaction with the Human Multidrug and Toxin Extruder, MATE1

Lucy J. Martínez-Guerrero, Mark Morales, Sean Ekins and Stephen H. Wright
Molecular Pharmacology September 2016, 90 (3) 254-264; DOI: https://doi.org/10.1124/mol.116.105056
Lucy J. Martínez-Guerrero
Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.J.M.-G., M.M., S.H.W.); and Collaborations in Chemistry, Fuquay-Varina, North Carolina (S.E.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark Morales
Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.J.M.-G., M.M., S.H.W.); and Collaborations in Chemistry, Fuquay-Varina, North Carolina (S.E.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sean Ekins
Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.J.M.-G., M.M., S.H.W.); and Collaborations in Chemistry, Fuquay-Varina, North Carolina (S.E.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen H. Wright
Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona (L.J.M.-G., M.M., S.H.W.); and Collaborations in Chemistry, Fuquay-Varina, North Carolina (S.E.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Multidrug and toxin extruder (MATE) 1 plays a central role in mediating renal secretion of organic cations, a structurally diverse collection of compounds that includes ∼40% of prescribed drugs. Because inhibition of transport activity of other multidrug transporters, including the organic cation transporter (OCT) 2, is influenced by the structure of the transported substrate, the present study screened over 400 drugs as inhibitors of the MATE1-mediated transport of four structurally distinct organic cation substrates: the commonly used drugs: 1) metformin and 2) cimetidine; and two prototypic cationic substrates, 3) 1-methyl-4-phenylpyridinium (MPP), and 4) the novel fluorescent probe, N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino]ethanaminium iodide. Transport was measured in Chinese hamster ovary cells that stably expressed the human ortholog of MATE1. Comparison of the resulting inhibition profiles revealed no systematic influence of substrate structure on inhibitory efficacy. Similarly, IC50 values for 26 structurally diverse compounds revealed no significant influence of substrate structure on the kinetic interaction of inhibitor with MATE1. The IC50 data were used to generate three-dimensional quantitative pharmacophores that identified hydrophobic regions, H-bond acceptor sites, and an ionizable (cationic) feature as key determinants for ligand binding to MATE1. In summary, in contrast to the behavior observed with some other multidrug transporters, including OCT2, the results suggest that substrate identity exerts comparatively little influence on ligand interaction with MATE1.

Footnotes

    • Received May 13, 2016.
    • Accepted June 30, 2016.
  • This work was supported by the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases [Grant 1R01DK080801]; the National Institutes of Health National Institute of Environmental Health Sciences [Grant 5P30ES006694]; and the National Institutes of Health National Heart, Lung, and Blood Institute [Grant 5T32HL07249].

  • Portions of this work were a part of a dissertation that was submitted by L.J.M.-G. to the University of Arizona in accordance with academic requirements.

  • dx.doi.org/10.1124/mol.116.105056.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 90 (3)
Molecular Pharmacology
Vol. 90, Issue 3
1 Sep 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Lack of Influence of Substrate on Ligand Interaction with the Human Multidrug and Toxin Extruder, MATE1
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Substrate Independence of MATE1 Inhibition

Lucy J. Martínez-Guerrero, Mark Morales, Sean Ekins and Stephen H. Wright
Molecular Pharmacology September 1, 2016, 90 (3) 254-264; DOI: https://doi.org/10.1124/mol.116.105056

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Substrate Independence of MATE1 Inhibition

Lucy J. Martínez-Guerrero, Mark Morales, Sean Ekins and Stephen H. Wright
Molecular Pharmacology September 1, 2016, 90 (3) 254-264; DOI: https://doi.org/10.1124/mol.116.105056
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics