Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleMinireview—A Latin American Perspective on Ion Channels

Gating, Regulation, and Structure in K2P K+ Channels: In Varietate Concordia?

María Isabel Niemeyer, L. Pablo Cid, Wendy González and Francisco V. Sepúlveda
Molecular Pharmacology September 2016, 90 (3) 309-317; DOI: https://doi.org/10.1124/mol.116.103895
María Isabel Niemeyer
Centro de Estudios Científicos (CECs), Valdivia, Chile (M.I.N., L.P.C., F.V.S.), Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile (W.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Pablo Cid
Centro de Estudios Científicos (CECs), Valdivia, Chile (M.I.N., L.P.C., F.V.S.), Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile (W.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wendy González
Centro de Estudios Científicos (CECs), Valdivia, Chile (M.I.N., L.P.C., F.V.S.), Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile (W.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francisco V. Sepúlveda
Centro de Estudios Científicos (CECs), Valdivia, Chile (M.I.N., L.P.C., F.V.S.), Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile (W.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Visual Overview

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

K2P K+ channels with two pore domains in tandem associate as dimers to produce so-called background conductances that are regulated by a variety of stimuli. Whereas gating in K2P channels has been poorly understood, recent developments have provided important clues regarding the gating mechanism for this family of proteins. Two modes of gating present in other K+ channels have been considered. The first is the so-called activation gating that occurs by bundle crossing and the splaying apart of pore-lining helices commanding ion passage. The second mode involves a change in conformation at the selectivity filter (SF), which impedes ion flow at this narrow portion of the conduction pathway and accounts for extracellular pH modulation of several K2P channels. Although some evidence supports the existence of an activation gate in K2P channels, recent results suggest that perhaps all stimuli, even those sensed at a distant location in the protein, are also mediated by SF gating. Recently resolved crystal structures of K2P channels in conductive and nonconductive conformations revealed that the nonconductive state is reached by blockade by a lipid acyl chain that gains access to the channel cavity through intramembrane fenestrations. Here we discuss whether this novel type of gating, proposed so far only for membrane tension gating, might mediate gating in response to other stimuli or whether SF gating is the only type of opening/closing mechanism present in K2P channels.

Footnotes

    • Received February 18, 2016.
    • Accepted May 31, 2016.
  • The work in the authors’ laboratories is funded by FONDECYT grants 1140153 (M.I.N., L.P.C. and F.V.S.) and 1140624 (W.G.). The Centro de Estudios Científicos (CECs) is supported by the Centres of Excellence Base Financing Programme of Conicyt.

  • dx.doi.org/10.1124/mol.116.103895.

  • Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 90 (3)
Molecular Pharmacology
Vol. 90, Issue 3
1 Sep 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Gating, Regulation, and Structure in K2P K+ Channels: In Varietate Concordia?
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleMinireview—A Latin American Perspective on Ion Channels

Gating, Regulation, and Structure in K2P K+ Channels

María Isabel Niemeyer, L. Pablo Cid, Wendy González and Francisco V. Sepúlveda
Molecular Pharmacology September 1, 2016, 90 (3) 309-317; DOI: https://doi.org/10.1124/mol.116.103895

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleMinireview—A Latin American Perspective on Ion Channels

Gating, Regulation, and Structure in K2P K+ Channels

María Isabel Niemeyer, L. Pablo Cid, Wendy González and Francisco V. Sepúlveda
Molecular Pharmacology September 1, 2016, 90 (3) 309-317; DOI: https://doi.org/10.1124/mol.116.103895
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Visual Overview
    • Abstract
    • Introduction
    • Gating Processes of K+ Channels
    • Molecular Structure of K2P Channels
    • Gating at the Selectivity Filter of K2P Channels
    • Is There the Equivalent of an Activation Gate Operative in K2P Channels?
    • An All-Encompassing Role for the Selectivity Filter in the Gating of K2P Channels
    • A Novel Hypothesis to Explain TRAAK Mechanosensitivity
    • TASK-2 and the K2P Channel Gating Hypotheses
    • Concluding Remarks
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Autophagy and Ca2+ in Human Disease
  • Redox Modulation of GABAA Receptors
  • Ligand Binding on TRPV1 Channels
Show more Minireview—A Latin American Perspective on Ion Channels

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics