Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Role of the Second Extracellular Loop of the Adenosine A1 Receptor on Allosteric Modulator Binding, Signaling, and Cooperativity

Anh T. N. Nguyen, Elizabeth A. Vecchio, Trayder Thomas, Toan D. Nguyen, Luigi Aurelio, Peter J. Scammells, Paul J. White, Patrick M. Sexton, Karen J. Gregory, Lauren T. May and Arthur Christopoulos
Molecular Pharmacology December 2016, 90 (6) 715-725; DOI: https://doi.org/10.1124/mol.116.105015
Anh T. N. Nguyen
Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elizabeth A. Vecchio
Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Trayder Thomas
Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Toan D. Nguyen
Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Luigi Aurelio
Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter J. Scammells
Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul J. White
Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick M. Sexton
Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karen J. Gregory
Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lauren T. May
Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arthur Christopoulos
Monash Institute of Pharmaceutical Sciences (A.T.N.N., E.A.V., T.T., L.A., P.J.S., P.J.W., P.M.S., K.J.G., L.T.M., A.C.), Monash e-Research Centre (T.D.N.), and Department of Pharmacology (A.T.N.N., E.A.V., P.M.S., K.J.G., L.T.M., A.C), Monash University, Victoria, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Allosteric modulation of adenosine A1 receptors (A1ARs) offers a novel therapeutic approach for the treatment of numerous central and peripheral disorders; however, despite decades of research, there is a relative paucity of structural information regarding the A1AR allosteric site and mechanisms governing cooperativity with orthosteric ligands. We combined alanine-scanning mutagenesis of the A1AR second extracellular loop (ECL2) with radioligand binding and functional interaction assays to quantify effects on allosteric ligand affinity, cooperativity, and efficacy. Docking and molecular dynamics (MD) simulations were performed using an A1AR homology model based on an agonist-bound A2AAR structure. Substitution of E172ECL2 for alanine reduced the affinity of the allosteric modulators PD81723 and VCP171 for the unoccupied A1AR. Residues involved in cooperativity with the orthosteric agonist NECA were different in PD81723 and VCP171; positive cooperativity between PD81723 and NECA was reduced on alanine substitution of a number of ECL2 residues, including E170ECL2 and K173ECL2, whereas mutation of W146ECL2 and W156ECL2 decreased VCP171 cooperativity with NECA. Molecular modeling localized a likely allosteric pocket for both modulators to an extracellular vestibule that overlaps with a region used by orthosteric ligands as they transit into the canonical A1AR orthosteric site. MD simulations confirmed a key interaction between E172ECL2 and both modulators. Bound PD81723 is flanked by another residue, E170ECL2, which forms hydrogen bonds with adjacent K168ECL2 and K173ECL2. Collectively, our data suggest E172ECL2 is a key allosteric ligand-binding determinant, whereas hydrogen-bonding networks within the extracellular vestibule may facilitate the transmission of cooperativity between orthosteric and allosteric sites.

Footnotes

    • Received May 2, 2016.
    • Accepted September 27, 2016.
  • ↵This work was funded by the National Health and Medical Research Council of Australia (NHMRC) [Program Grants APP1055134, APP1084487, APP1084246]. A.T.N.N. is a recipient of an Australian Endeavour scholarship and fellowship. L.T.M. is a recipient of an Australian Research Council Discovery Early Career Researcher Award (DECRA), A.C. is a senior principal research fellow, and P.M.S. is a principal research fellow, of the NHMRC. K.J.G. is an NHMRC Overseas Biomedical Postdoctoral Training Fellow.

  • dx.doi.org/10.1124/mol.116.105015.

  • Embedded ImageThis article has supplemental material available at molpharm@aspetjournals.org

  • Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 90 (6)
Molecular Pharmacology
Vol. 90, Issue 6
1 Dec 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of the Second Extracellular Loop of the Adenosine A1 Receptor on Allosteric Modulator Binding, Signaling, and Cooperativity
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Identification of the A1AR Allosteric Site

Anh T. N. Nguyen, Elizabeth A. Vecchio, Trayder Thomas, Toan D. Nguyen, Luigi Aurelio, Peter J. Scammells, Paul J. White, Patrick M. Sexton, Karen J. Gregory, Lauren T. May and Arthur Christopoulos
Molecular Pharmacology December 1, 2016, 90 (6) 715-725; DOI: https://doi.org/10.1124/mol.116.105015

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Identification of the A1AR Allosteric Site

Anh T. N. Nguyen, Elizabeth A. Vecchio, Trayder Thomas, Toan D. Nguyen, Luigi Aurelio, Peter J. Scammells, Paul J. White, Patrick M. Sexton, Karen J. Gregory, Lauren T. May and Arthur Christopoulos
Molecular Pharmacology December 1, 2016, 90 (6) 715-725; DOI: https://doi.org/10.1124/mol.116.105015
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cysteine151 in Keap1 Drives CDDO-Me Pharmacodynamic Action
  • Allosteric Modulation of Metabotropic Glutamate Receptor 1
  • Mechanism of Selective Action of Paraherquamide A
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics