Abstract
The μ-opioid receptor (MOR) is a Gi/o protein-coupled receptor that mediates analgesic, euphoric, and reward effects. Using a bacterial two-hybrid screen, we reported that the carboxyl tail of the rat MOR associates with A20-binding inhibitor of nuclear factor κB (ABIN-1). This interaction was confirmed by direct protein-protein binding and coimmunoprecipitation of MOR and ABIN-1 proteins in cell lysates. Saturation binding studies showed that ABIN-1 had no effect on MOR binding. However, the interaction of ABIN-1 and MOR inhibited the activation of G proteins induced by DAMGO ([d-Ala2,N-Me-Phe4,Gly5-ol]-Enkephalin). MOR phosphorylation, ubiquitination, and internalization induced by DAMGO were decreased in Chinese hamster ovary cells that coexpressed MOR and ABIN-1. The suppression of forskolin-stimulated adenylyl cyclase by DAMGO was also inhibited by the interaction of ABIN-1 with MOR. In addition, extracellular signal-regulated kinase activation was also negatively regulated by overexpression of ABIN-1. These data suggest that ABIN-1 is a negative coregulator of MOR activation, phosphorylation, and internalization in vitro. ABIN-1 also inhibited morphine-induced hyperlocomotion in zebrafish larvae (AB strain). By utilization of an antisense morpholino oligonucleotide (MO) gene knockdown technology, the ABIN-1 MO-injected zebrafish larvae showed a significant increase (approximately 60%) in distance moved compared with control MO-injected larvae after acute morphine treatment (P < 0.01). Taken together, ABIN-1 negatively regulates MOR function in vitro and in vivo.
Footnotes
- Received April 8, 2017.
- Accepted December 1, 2017.
This work was supported by grants from the Natural Science Foundation of China [No. 81473194 and 30901799], the Natural Science Foundation of Beijing [No.7092078], and the National Science and Technology Major Project of the Ministry of Science and Technology of China [2012ZX09301003-003]. The authors declare no conflict of interest.
↵This article has supplemental material available at molpharm.aspetjournals.org.
- Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|