Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Derivatives of Piperazines as Potential Therapeutic Agents for Alzheimer’s Disease

Elena Popugaeva, Daria Chernyuk, Hua Zhang, Tatyana Y. Postnikova, Karina Pats, Elena Fedorova, Vladimir Poroikov, Aleksey V. Zaitsev and Ilya Bezprozvanny
Molecular Pharmacology April 2019, 95 (4) 337-348; DOI: https://doi.org/10.1124/mol.118.114348
Elena Popugaeva
Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daria Chernyuk
Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hua Zhang
Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tatyana Y. Postnikova
Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karina Pats
Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elena Fedorova
Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vladimir Poroikov
Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aleksey V. Zaitsev
Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ilya Bezprozvanny
Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder that is the major cause of dementia in the elderly. There is no cure against AD. We have recently discovered a novel transient receptor potential canonical 6 (TRPC6)–mediated intracellular signaling pathway that regulates the stability of dendritic spines and plays a role in memory formation. We have previously shown that TRPC6 agonists exert beneficial effects in models of AD and may serve as lead compounds for development of AD therapeutic agents. In the current study, we used the Clarivate Analytics Integrity database to search for additional TRPC6 agonists. We selected four compounds to study as potential neuroprotective agents. We applied bioinformatics analyses to test the basic pharmacological properties of the selected compounds. We performed in vitro screening of these compounds to validate their ability to protect mushroom spines from amyloid toxicity and determined that two of these compounds exert neuroprotective effects in the nanomolar concentration range. We have chosen one of these compounds [piperazine (PPZ)] for further testing. In agreement with previously published data, we have shown that PPZ potentiates TRPC6 channels. We demonstrated that the neuroprotective mechanism of the investigated PPZ is based on activation of neuronal store-operated calcium entry in spines. We have shown that PPZ restores long-term potentiation induction in 6-month-old 5xFAD mouse hippocampal slices. The obtained results suggest that PPZ and its derivatives are potential lead molecules for development of AD therapeutic agents.

Footnotes

    • Received September 7, 2018.
    • Accepted January 6, 2019.
  • This work was supported by the National Institutes of Health [Grant R01NS080152] (to I.B.) (results depicted in Figure 5); the Russian Science Foundation [Grant 14-25-00024-П] (to I.B.) (results depicted in Figures 2–4); a State Grant [17.991.2017/4.6] (to I.B.) (results depicted in Figure 1 and Figure 6), in part by a grant from the Russian Foundation for Basic Research [Project No. 17-00-00408] (to A.V.Z.) (results depicted in Figure 7); the President of Russian Federation [Grant 14.Y30.17.1043-MK] (to E.P.) (results depicted in Table 1 and Table 2); and the Russian State Academies of Sciences Fundamental Research Program for 2013–2020 (to V.P.) (Integrity search and PASS Online support).

  • I.B. is a holder of the Carl J. and Hortense M. Thomsen Chair in Alzheimer’s Disease Research.

  • https://doi.org/10.1124/mol.118.114348.

  • ↵Embedded ImageThis article has supplemental material available at molpharm.aspetjournals.org.

  • Copyright © 2019 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 95 (4)
Molecular Pharmacology
Vol. 95, Issue 4
1 Apr 2019
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Derivatives of Piperazines as Potential Therapeutic Agents for Alzheimer’s Disease
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Piperazines as Potential Neuroprotective Agents

Elena Popugaeva, Daria Chernyuk, Hua Zhang, Tatyana Y. Postnikova, Karina Pats, Elena Fedorova, Vladimir Poroikov, Aleksey V. Zaitsev and Ilya Bezprozvanny
Molecular Pharmacology April 1, 2019, 95 (4) 337-348; DOI: https://doi.org/10.1124/mol.118.114348

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Piperazines as Potential Neuroprotective Agents

Elena Popugaeva, Daria Chernyuk, Hua Zhang, Tatyana Y. Postnikova, Karina Pats, Elena Fedorova, Vladimir Poroikov, Aleksey V. Zaitsev and Ilya Bezprozvanny
Molecular Pharmacology April 1, 2019, 95 (4) 337-348; DOI: https://doi.org/10.1124/mol.118.114348
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Material and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Identification of Celecoxib targets by label-free TPP
  • Editing TOP2α Intron 19 5′ SS Circumvents Drug Resistance
  • CTS Bias
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics