Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Rapid CommunicationMinireview—Computational Analysis of GPCRs

Understanding Peptide Binding in Class A G Protein-Coupled Receptors

Irina G. Tikhonova, Veronique Gigoux and Daniel Fourmy
Molecular Pharmacology November 2019, 96 (5) 550-561; DOI: https://doi.org/10.1124/mol.119.115915
Irina G. Tikhonova
School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom, (I.G.T.) and INSERM ERL1226-Receptology and Therapeutic Targeting of Cancers, Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, Toulouse, France (V.G., D.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Veronique Gigoux
School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom, (I.G.T.) and INSERM ERL1226-Receptology and Therapeutic Targeting of Cancers, Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, Toulouse, France (V.G., D.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel Fourmy
School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom, (I.G.T.) and INSERM ERL1226-Receptology and Therapeutic Targeting of Cancers, Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, Toulouse, France (V.G., D.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Fig. 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 1.

    Receptor-peptide terminal group interactions in the X-ray peptide-GPCR complexes. The overview of the peptide binding is on the left side and the zoom view of the peptide terminal group interactions is on the right side. (A) Endothelin with the free C-terminal carboxylic group and ETB; (B) neurotensin with the free C-terminal carboxylic group and NTS1; (C) apelin with the free C-terminal carboxylic group and APLNR; (D) [Sar1, Ile8] angiotensin II with the free C-terminal carboxylic group and AT2; (E) DAMGO peptide with the N-terminal ammonium and MOR; (F) CVX15 with the N-terminal ammonium and CXCR4. Peptide and receptor ribbons are in red and gray, respectively. Peptide carbon atoms are in green; only receptor residues forming interactions are shown. Salt bridges and hydrogen bonds are shown in pink and black dashed lines.

  • Fig. 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 2.

    Alignment of binding site residues for human class A peptide GPCRs. (A) GPCRs binding peptides with the C-terminal free carboxyl group pointing to the helical cavity. (B) GPCRs binding peptides with the C-terminal amidated group pointing to the helical cavity. (C) GPCRs binding peptides with the N-terminus pointing to the helical cavity. (D) GPCRs binding the cyclic peptides. (E) PAR receptors. Positively charged, negatively charged, and amide-containing residues are in cyan, purple, and yellow, respectively. Receptors co-crystalized with a peptide and synthetic ligands are in gray. Residues forming direct interactions with peptides are in bold. APLNR, apelin receptor; AT1, AT2, angiotensin receptors; B1, B2, bradykinin receptors; BB1, BB2, BB3, bombesin receptors; C3a, C5a1, C5a2, complement peptide receptors; CCK1, CCK2, cholecystokinin receptors; DOR, KOR, MOR, NOP, opioid receptors; ETA, ETB, endothelin receptors; FPR1, FPR2, FPR3, N-formyl peptide receptors; GAL1, GAL2, GAL3, galanin receptors; GHSR, ghrelin receptor; GNRHR, gonadotropin-releasing hormone receptor; KISS1R, kisspeptin receptor; MC1, MC2, MC3, MC4, MC5, melanocyte-stimulating hormone receptors; MCH1, MCH2, melanin-concentrating hormone; MLNR, motilin receptor; NK1, NK2, NK3, neurokinin/tachykinin receptors; NMU1, NMU2, neuromedin-U receptors; NPBW1, NPBW2, neuropeptide B/W receptors; NPFF1, NPFF2, neuropeptide FF receptor; NPSR1, neuropeptide S receptor; NPY1, NPY2, NPY4, NPY5, neuropeptide Y receptors; NTS1, NTS2, neurotensin receptors; OX1, OX2, orexin receptors; OT, oxytocin receptor; PAR1, PAR2, PAR3, PAR4, PAR5, proteinase-activated receptors; PrRP, prolactin-releasing peptide receptor; QRFP, pyroglutamylated RFamide peptide receptor; RXFP1, RXFP2, RXFP3, RXFP4, relaxin receptors; SST1, SST2, SST3, SST4, SST5, somatostatin receptors; TRH1, thyrotropin-releasing hormone receptor; V1A, V1B, V2, vasopressin receptors; UT, urotensin receptor. Conservation score (%) for each residue position calculated from the analysis of receptor orthologs (bovine, chimpanzee, guinea pig, human, mouse, rabbit, and rat) is shown at the bottom of each binding site residue alignment. The conservation score and the corresponded bar are shown for the most conserved positively charged (cyan), negatively charged (purple) or amide-containing residues (yellow).

  • Fig. 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 3.

    Ligand binding sites of peptide GPCRs. Nonpeptide antagonist interactions with residues at positions 3.32. 4.60, and/or 6.55 in the crystal structures of NPY1, OX1, OX2, and NK1. Validated homology model of the CCK2 receptor complexed with the CCK4 peptide (Langer et al., 2005). The antagonists, the peptide CCK4, and the receptors are labeled and only the amide-containing residue is shown. Hydrogen bonding is in black-dashed lines.

Tables

  • Figures
    • View popup
    TABLE 1

    Hydrogen bond (H) and salt bridge (SB) interactions between a peptide and the helical cavity from the available crystal structures of class A GPCRs bound to a peptide

    PeptideReceptorOverall Number of ContactsNumber of Contacts with Peptide Side ChainsNumber of Contacts with Peptide BackboneNumber of Contacts with Peptide Terminal GroupNumber of Peptide Residues within the CavityPDB Code
    ApelinAPLNR82H+1SBa2H2H+1SB65VBL
    NeurotensinNTS161H1H3H+1SB44GRV
    EndothelinETB164H+1SB6H3H+2SB165GLH
    [Sar1, Ile8]AngIIAT2123H+1SB6H1H+1SB65XJM
    DIPP-NH2DOR41H2H+1SB34RWD
    DAMGOMOR41H2H+1SB56DDF
    CX3CL1US2851H3H1H74XT3
    CX3CL1/Nb7US2872H4H1H114XT1
    vMIP-IICXCR4136H+2SB2H2H+1SB94RWS
    CVX15CXCR4106H+3SB1H63OE0
    cyclicPMX53C5a1126H+1SB5H36C1R
    • ↵a Hydrogen bond criteria: 3 Å for the maximum distance between donor and acceptor atoms, 90° and 60° for donor and acceptor minimum angles, respectively. Salt bridge criteria: the maximum distance between atoms is 5 Å.

    • View popup
    TABLE 2

    Peptides binding to class A GPCRs with key regions important for activity

    PeptideReceptorSequence of a Peptide or Short Active Peptide Fragment (Peptide Region Important for Activity is Highlighted in Grey, Cysteine Involved in the Disulfide Bridges Are in Bold.)End Group Important for ActivityPeptide Terminal End Inside the Helical BundleReference
    AngiotensinAT1, AT2Embedded Image-COOHC-endRioux et al., 1975; Karnik 2000; Asada et al., 2018
    ApelinAPLNREmbedded Image-COOHC-endMurza et al., 2012; Ma et al., 2017
    BradykininB1, B2Embedded Image-COOHC-endRhaleb et al., 1990; Jarnagin et al., 1996; Ha et al., 2006
    Complement PeptidesEmbedded Image-COOHC-endMollison et al., 1989; Higginbottom et al., 2005; Klos et al., 2013; Liu et al., 2018
    C3aC3a
    C5aC5a1, C5a2
    EndothelinETA ETBEmbedded Image-COOHC-endRovero et al., 1990; Shihoya et al., 2016
    NeurotensinNTS1, NTS2Embedded Image-COOHC-endLabbe-Jullie et al., 1998; White et al., 2012; Kleczkowska and Lipkowski, 2013)
    C-end of Chain BBathgate et al., 2013; Hu et al., 2017; Patil et al., 2017; Wong et al., 2018
    H2 relaxinRXFP1Embedded Image
    Insulin-like peptide 3 (INSL3)RXFP2Embedded ImageEmbedded Image
    H3 relaxinRXFP3Embedded ImageC-end of Chain B
    INSL5RXFP4Embedded ImageC-end of chain B
    Cholecystokinin gastrinCCK1
    CCK2
    Embedded ImageEmbedded Image-CONH2C-endMorley et al., 1965; Jensen et al., 1982; Black and Kalindjian, 2002; Archer-Lahlou et al., 2005; Dufresne et al., 2006
    OrexinOX1, OX2Embedded Image-CONH2C-endDarker et al., 2001; Ammoun et al., 2003; Lang et al., 2004; Heifetz et al., 2013
    Neuropeptide YNPY1, 2, 4, and 5Embedded Image-CONH2C-endBoublik et al., 1989; Xu et al., 2013, 2018; Yang et al., 2018
    Prolactin-releasing peptidePrRPEmbedded Image-CONH2C-endBoyle et al., 2005; Findeisen et al., 2011; Rathmann et al., 2012
    Pyroglutamylated RFamide peptideQRFPEmbedded Image-CONH2C-endFindeisen et al., 2011
    Neuropeptide FFNPFF1-2Embedded Image-CONH2C-endFindeisen et al., 2011
    Metastin/kisspeptinKISS1REmbedded Image-CONH2C-endKotani et al., 2001; Findeisen et al., 2011
    VasopressinV1A, V1B, V2Embedded Image-CONH2Cyclic endJard and Bockaert, 1975; Mouillac et al., 1995; Chini and Fanelli, 2000
    OxytocinOTEmbedded Image-CONH2Cyclic endJard and Bockaert, 1975; Chini and Fanelli, 2000; Gimpl and Fahrenholz, 2001
    Neuromedin BBB1Embedded Image-CONH2C-endMervic et al., 1991; Lin et al., 1995; Jensen et al., 2008
    Gastrin-relesing peptideBB2Embedded Image
    BombesinBB3Embedded Image
    Neuromedin-UNMU1-2Embedded Image-CONH2C-endBrighton et al., 2004; Kawai et al., 2014
    Substance-P/K, neurokinin, tachykininNK1, NK2, NK3Embedded Image-CONH2C-endCouture et al., 1979; Ganjiwale et al., 2011
    Neurokinin A
    Neurokinin B
    Thyrotropin-releasing hormoneTRH1Embedded Image-CONH2AllChang et al., 1971; Engel and Gershengorn, 2007
    Opioid peptides endorphinsDOR, KOR, MOR, NOPEmbedded ImageH2N-N-endMorley 1983; Koehl et al., 2018
    Neuropeptides B/WNPBW1-2Embedded ImageN-endKanesaka et al., 2007
    Neuropeptide SNPSR1Embedded ImageN-endRoth et al., 2006
    N-formyl peptideFPR1-3Embedded ImageO=HC-NH-N-endProssnitz and Ye, 1997
    Adrenocorticotropic hormoneMC1–5Embedded ImageO=HC-NH-FRWSchwyzer, 1977; Matsunaga et al., 1989; Schioth et al., 1997; Audinot et al., 2001; Haskell-Luevano et al., 2001
    Melanocortins (α, β, and γ)
    MotilinMLNREmbedded ImageN-endPoitras et al., 1992; Xu et al., 2005
    GhrelinGHSREmbedded ImageN-endCharron et al., 2017
    Gonadotropin-releasing hormoneGNRHREmbedded ImageCONHCHO-N-endHoffmann et al., 2000; Padula, 2005; Barran et al., 2005
    GalaninGAL1-3Embedded ImageH2N-N-endChurch et al., 2002; Lang et al., 2015
    UrotensinUTEmbedded ImageCyclic portionLabarrere et al., 2003; Merlino et al., 2013
    Melanin-concentrating hormoneMCH1-2Embedded ImageCyclic portionMatsunaga et al., 1989; Schioth et al., 1997; Audinot et al., 2001
    SomatostatinSST1-5Embedded ImageCyclic portionVale et al., 1978; Martin-Gago et al., 2013
    Fragments of a tethered ligandPAR1-4Embedded ImageGerszten et al., 1994
    • BB1, BB2, BB3, bombesin receptors; C3a, C5a1, C5a2, complement peptide receptors; CCK1, CCK2, cholecystokinin receptors; ETA, ETB, endothelin receptors; FPR1, FPR2, FPR3, N-formyl peptide receptors; GAL1, GAL2, GAL3, galanin receptors; GHSR, ghrelin receptor; GNRHR, gonadotropin-releasing hormone receptor; MC5, melanocyte-stimulating hormone receptor; MCH1, MCH2, melanin-concentrating hormone receptors; MLNR, motilin receptor; NPBW1, NPBW2, neuropeptide B/W receptors; NPFF1, NPFF2, neuropeptide FF receptor; NPSR1, neuropeptide S receptor; PrRP, prolactin-releasing peptide receptor; QRFP, pyroglutamylated RFamide peptide receptor; SST1, SST2, SST3, SST4, SST5, somatostatin receptors; TRH1, thyrotropin-releasing hormone receptor; UT, urotensin receptor; V1A, V1B, V2, vasopressin receptors.

PreviousNext
Back to top

In this issue

Molecular Pharmacology: 96 (5)
Molecular Pharmacology
Vol. 96, Issue 5
1 Nov 2019
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Understanding Peptide Binding in Class A G Protein-Coupled Receptors
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationMinireview—Computational Analysis of GPCRs

Peptide Class A GPCRs

Irina G. Tikhonova, Veronique Gigoux and Daniel Fourmy
Molecular Pharmacology November 1, 2019, 96 (5) 550-561; DOI: https://doi.org/10.1124/mol.119.115915

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationMinireview—Computational Analysis of GPCRs

Peptide Class A GPCRs

Irina G. Tikhonova, Veronique Gigoux and Daniel Fourmy
Molecular Pharmacology November 1, 2019, 96 (5) 550-561; DOI: https://doi.org/10.1124/mol.119.115915
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • X-Ray Structures of GPCRs Bound to Peptides
    • Class A Receptor Grouping with Peptide SAR and Hydrophilic Binding Site Residues as a Basis
    • GPCRs Binding Peptides with the C-Terminal Free Carboxyl Group Interacting with the Helical Cavity
    • GPCRs Binding Peptides with the C-Terminal Amidated Carboxyl Group Interacting with the Helical Cavity
    • GPCRs Binding Peptides with the N-Terminal End Pointing to the Helical Bundle
    • GPCRs Binding Cyclic Peptides with a Cyclic Part Important for Activity and the PAR Receptors
    • Concluding Remarks
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • A Biased View of μ-Opioid Receptors?
  • Membrane-Facilitated Allosteric Modulation of GPCRs
Show more Minireview—Computational Analysis of GPCRs

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics