Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Heteromeric Assembly of Truncated Neuronal Kv7 Channels: Implications for Neurologic Disease and Pharmacotherapy

Jingru Li, Jasmine Maghera, Shawn M. Lamothe, Elysa J. Marco and Harley T. Kurata
Molecular Pharmacology September 2020, 98 (3) 192-202; DOI: https://doi.org/10.1124/mol.120.119644
Jingru Li
Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada (J.L., J.M., S.M.L., H.T.K.) and Department of Neurodevelopmental Medicine, Cortica Healthcare, San Rafael, California (E.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jasmine Maghera
Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada (J.L., J.M., S.M.L., H.T.K.) and Department of Neurodevelopmental Medicine, Cortica Healthcare, San Rafael, California (E.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shawn M. Lamothe
Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada (J.L., J.M., S.M.L., H.T.K.) and Department of Neurodevelopmental Medicine, Cortica Healthcare, San Rafael, California (E.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elysa J. Marco
Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada (J.L., J.M., S.M.L., H.T.K.) and Department of Neurodevelopmental Medicine, Cortica Healthcare, San Rafael, California (E.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Harley T. Kurata
Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada (J.L., J.M., S.M.L., H.T.K.) and Department of Neurodevelopmental Medicine, Cortica Healthcare, San Rafael, California (E.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Neuronal voltage-gated potassium channels (Kv) are critical regulators of electrical activity in the central nervous system. Mutations in the KCNQ (Kv7) ion channel family are linked to epilepsy and neurodevelopmental disorders. These channels underlie the neuronal “M-current” and cluster in the axon initial segment to regulate the firing of action potentials. There is general consensus that KCNQ channel assembly and heteromerization are controlled by C-terminal helices. We identified a pediatric patient with neurodevelopmental disability, including autism traits, inattention and hyperactivity, and ataxia, who carries a de novo frameshift mutation in KCNQ3 (KCNQ3-FS534), leading to truncation of ∼300 amino acids in the C terminus. We investigated possible molecular mechanisms of channel dysfunction, including haplo-insufficiency or a dominant-negative effect caused by the assembly of truncated KCNQ3 and functional KCNQ2 subunits. We also used a recently recognized property of the KCNQ2-specific activator ICA-069673 to identify assembly of heteromeric channels. ICA-069673 exhibits a functional signature that depends on the subunit composition of KCNQ2/3 channels, allowing us to determine whether truncated KCNQ3 subunits can assemble with KCNQ2. Our findings demonstrate that although the KCNQ3-FS534 mutant does not generate functional channels on its own, large C-terminal truncations of KCNQ3 (including the KCNQ3-FS534 mutation) assemble efficiently with KCNQ2 but fail to promote or stabilize KCNQ2/KCNQ3 heteromeric channel expression. Therefore, the frequent assumption that pathologies linked to KCNQ3 truncations arise from haplo-insufficiency should be reconsidered in some cases. Subtype-specific channel activators like ICA-069673 are a reliable tool to identify heteromeric assembly of KCNQ2 and KCNQ3.

SIGNIFICANCE STATEMENT Mutations that truncate the C terminus of neuronal Kv7/KCNQ channels are linked to a spectrum of seizure disorders. One role of the multifunctional KCNQ C terminus is to mediate subtype-specific assembly of heteromeric KCNQ channels. This study describes the use of a subtype-specific Kv7 activator to assess assembly of heteromeric KCNQ2/KCNQ3 (Kv7.2/Kv7.3) channels and demonstrates that large disease-linked and experimentally generated C-terminal truncated KCNQ3 mutants retain the ability to assemble with KCNQ2.

Footnotes

    • Received February 4, 2020.
    • Accepted June 11, 2020.
  • This work was funded by the Canadian Institutes of Health Research [Grant MOP-97988] to H.T.K. S.M.L. was supported by a Rowland and Muriel Haryett Fellowship, University of Alberta Neuroscience and Mental Health Institute. J.L. was supported by a Canadian Institutes of Health Research CGS-M award. H.T.K. was supported by a Canadian Institutes of Health Early Career Investigator award and salary support from the Alberta Diabetes Institute.

  • https://doi.org/10.1124/mol.120.119644.

  • Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 98 (3)
Molecular Pharmacology
Vol. 98, Issue 3
1 Sep 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Heteromeric Assembly of Truncated Neuronal Kv7 Channels: Implications for Neurologic Disease and Pharmacotherapy
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Heteromeric Assembly of Truncated Kv7.3 Channels

Jingru Li, Jasmine Maghera, Shawn M. Lamothe, Elysa J. Marco and Harley T. Kurata
Molecular Pharmacology September 1, 2020, 98 (3) 192-202; DOI: https://doi.org/10.1124/mol.120.119644

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Heteromeric Assembly of Truncated Kv7.3 Channels

Jingru Li, Jasmine Maghera, Shawn M. Lamothe, Elysa J. Marco and Harley T. Kurata
Molecular Pharmacology September 1, 2020, 98 (3) 192-202; DOI: https://doi.org/10.1124/mol.120.119644
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • GABAAR Molecular Identity in Oligodendrocytes
  • Editing TOP2α Intron-19 5′ SS Circumvents Drug Resistance
  • SerpinA3N and drug induced liver injury
Show more Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics