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Abstract

      G protein-coupled receptors (GPCRs) are the largest family of signaling proteins and

the most common therapeutic targets. In the last two decades, an impressive progress in the

understanding of GPCR function has been achieved, largely driven by the idea of similarity

of the molecular mechanisms underlying their signaling and regulation. However, recent

comprehensive studies of signaling and trafficking of several GPCR subtypes, including

endogenous M3 muscarinic and H1 histamine receptor and expressed cysteinyl leukotriene

type 1 receptor in HEK293 cells, clearly demonstrate that each receptor is regulated by a

unique set of molecular mechanisms involving different players. These data indicate that

the “gold mine” of similarities is nearly exhausted, and that extrapolation from one

receptor to another is as likely to be misleading as illuminating. Further progress in the

field requires careful analysis of the regulation of individual GPCR subtypes in defined

cellular context.
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Striking similarity between the signaling pathways that translate light captured by rhodopsin

into the cGMP phosphodiesterase activity in photoreceptors and those converting hormonal

activation of b2-adrenergic receptor (b2AR) into the adenylyl cyclase activity in other cells was

noted in mid-eighties (Bitensky et al., 1984). However, the GPCR field as we know it was born

after seminal elucidation of the b2AR structure, which clearly showed that rhodopsin and b2AR

belong to the same protein family (Dixon et al., 1986). This discovery suggested that the

mechanisms regulating rhodopsin activity, such as phosphorylation and arrestin binding, likely

operate in the b2AR-driven signaling pathway. The idea proved remarkably fruitful: the first

functional analog of rhodopsin kinase, b-adrenergic receptor kinase (bARK; now known as G

protein-coupled receptor kinase 2, or GRK2) was identified the same year (Benovic et al.,

1986). Subsequent elegant experiments demonstrated that phosphorylation alone does not fully

account for b2AR desensitization, suggesting the role for an arrestin analog that binds non-visual

GPCRs (Benovic et al., 1987), which was soon discovered and termed b-arrestin (now known

as arrestin2 or b-arrestin1) (Lohse et al., 1990). The cloning of additional GPCRs (Frielle et al.,

1987; Kobilka et al., 1987), GRKs (Benovic et al., 1989; Benovic and Gomez, 1993;

Kunapuli and Benovic, 1993), and arrestins (Attramadal et al., 1992; Sterne-Marr et al., 1993)

added further proof of sequence similarity between these proteins and their respective visual

counterparts (Lorenz et al., 1991; Shinohara et al., 1987), reinforcing the view that most, if not

all, GPCRs signal similarly and are controlled by the same regulatory mechanisms. So, when

receptor-bound arrestins were found to act as adaptors linking the receptor to the components of

the internalization machinery of the coated pit, clathrin (Goodman et al., 1996) and AP2 (Laporte

et al., 1999), to mobilize and activate c-Src (Luttrell et al., 1999), and to scaffold kinase cascades

activating JNK3 (McDonald et al., 2000) and ERK1/2 (Luttrell et al., 2001), it was implicitly
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assumed that these findings apply to pretty much all GPCRs. The data indicating that this is not

necessarily the case were sometimes dismissed as inconsequential details. Partly due to this

tradition of generalization, the beautiful demonstration of the dimeric nature of a small group of

class C GPCRs (reviewed in (Pin et al., 2003)), along with evidence for dimerization of several

class A receptors under certain circumstances, was interpreted by some as proof that all GPCRs

exist as dimers, and that receptor dimers are necessary to interact with G proteins, arrestins, and

other binding partners (e.g., see (Fotiadis et al., 2006)). Although rigorous experimental testing

revealed serious limitations of this model ((Bayburt et al., 2007; Hanson et al., 2007b; James et

al., 2006; Whorton et al., 2007), reviewed in (Gurevich and Gurevich, 2008a; Gurevich and

Gurevich, 2008b)), in some ways this proved beneficial for the field, forcing us to see the

potential problems with generalizations and pay close attention to the particulars of the

regulation of individual receptors in defined cellular context.

       The paper by Luo et al in this issue (Luo et al., 2008) is an excellent example of this type of

study. The authors comprehensively explored the signaling by M3 muscarinic acetylcholine

receptor endogenously expressed in HEK293 cells by knocking down individual regulatory

proteins. Luo and colleagues found that GRK2, GRK3, and GRK6 significantly contribute to

desensitization of the M3 receptor, whereas GRK5 does not. In addition, knockdown of either

arrestin2 or arrestin3 increased M3-stimulated calcium response, implicating both subtypes in

M3 desensitization. The authors confirmed earlier observations (Budd et al., 2000) that casein

kinase-1a (CKIa) also participates in the suppression of M3-mediated calcium signaling. It is

worth noting that the list of kinases other than GRKs that phosphorylate GPCRs and directly

regulate their activity is growing. We can expect its further expansion as more receptor subtypes

are carefully studied. The role of CKIa in M3 receptor signaling is similar to the recently
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described key role of PKC phosphorylation in cysteinyl leukotriene type 1 receptor (CL1R)

desensitization (Naik et al., 2005). However, the discovery of the crucial role of PKC in CL1R

endocytosis (Naik et al., 2005), which was often thought to be mediated by GRK

phosphorylation of the receptor and subsequent arrestin binding, reveals an additional rather

unexpected role that phosphorylation of GPCRs by a variety of kinases might play. Interestingly,

PKC-induced CL1R endocytosis is arrestin-independent, although CL1R can also internalize in

arrestin-dependent manner (Naik et al., 2005). Although this aspect of GPCR trafficking is often

overlooked, CL1R is not the only receptor that internalizes via more than one pathway: this

phenomenon was reported with M2 muscrarinic acetylcholine receptor (Pals-Rylaarsdam et al.,

1997) and several other GPCR subtypes (reviewed in (Gurevich and Gurevich, 2006b)). To

summarize the study of Luo and colleagues, a large number of regulatory proteins, including

three different GRKs, CKIa, and two non-visual arrestins, are required for the normal

attenuation of calcium response to endogenous M3 receptor activation in HEK293 cells.

 An important point highlighted in this work and several previous studies is the multi-

functionality of GRKs and arrestins. Virtually every protein has multiple functions, all of which

are indiscriminately suppressed by its knockdown. Even when a certain GRK or arrestin subtype

is identified as a player in the regulation of a particular receptor, without direct evidence we

cannot assume that the GRK in question acts via receptor phosphorylation, or that arrestin affects

signaling via its binding to active GRK-phosphorylated receptor. GRKs carry a regulator of G

protein signaling (RGS) domain on their N-terminus that binds active GTP-liganded a-subunits

of Gq/11 (Carman et al., 1999). Thus, GRKs can inhibit the signaling of Gq/11-coupled

receptors, such as M3, via at least two distinct mechanisms: by phosphorylating the receptor to

promote arrestin-mediated uncoupling from cognate G proteins (Gurevich and Gurevich, 2004),
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and by sequestering activated a-subunits of Gq and G11 (Carman et al., 1999). To elucidate the

actual mechanism of GRK2-mediated inhibition of M3 receptor signaling, the authors used

precisely targeted tools: GRK2 mutants devoid of either kinase activity or the ability to bind

Gq/11 a-subunits. Since kinase-dead GRK2-K220R turned out to be as effective as wild type

GRK2, whereas both mutants defective in Gaq binding had no effect on M3 receptor signaling,

the data clearly demonstrate that GRK2 largely mediates M3 desensitization via sequestration of

Gaq/11 (Luo et al., 2008). In addition to sequestering and silencing Gaq/11 (Carman et al.,

1999; Iwata et al., 2005; Luo et al., 2008), GRK2 binds Gbg dimers (Pitcher et al., 1992),

blunts ERK1/2 activation by binding MEK1 (Jiménez-Sainz et al., 2006), and phosphorylates

quite a few non-GPCR substrates, such as tubulin (Carman et al., 1998) and ezrin (Cant and

Pitcher, 2005). In addition, GRKs 2 and 5 phosphorylate several isoforms of synuclein (Pronin

et al., 2000). GRKs can phosphorylate these proteins independently of receptor activation in

vitro. However, GRK interactions with phospholipids and Gbg, which are promoted by GRK

recruitment to active GPCRs in the cell, enhance phosphorylation of non-receptor substrates. In

most cases, we do not know whether phosphorylation of these substrates is actually affected by

receptor activation. A well described example of such a link is the phosphorylation of ezrin by

GRK2, which is a necessary step in the receptor activation-dependent reorganization of the actin

cytoskeleton (Cant and Pitcher, 2005).

     In terms of known multi-functionality, arrestins are way ahead of GRKs, interacting with an

incredible variety of signaling proteins (Gurevich and Gurevich, 2006a; Xiao et al., 2007).

Multiple partners preferentially interact with receptor-bound arrestins (Gurevich and Gurevich,

2003; Lefkowitz and Shenoy, 2005), some (e.g., microtubules (Hanson et al., 2007a) and

calmodulin (Wu et al., 2006)) exclusively bind free arrestins because their interaction sites
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overlap with that of the receptor (Hanson et al., 2006; Vishnivetskiy et al., 2004), whereas others

simply prefer arrestin in its free “inactive” conformation (Song et al., 2006). Bound arrestin not

only covers the cytoplasmic tip of the receptor, “crowding out” G proteins (Krupnick et al.,

1997), but often initiates the second round of signaling (Gurevich and Gurevich, 2003;

Lefkowitz and Shenoy, 2005), serving as a scaffold for MAP kinase cascades (Luttrell et al.,

2001; McDonald et al., 2000). GPCR activation can be translated into ERK1/2 phosphorylation

via distinct mechanisms mediated by G proteins or arrestins. After similar stories emerged from

studies with angiotensin II (Ahn et al., 2004), b2-adrenergic (Shenoy et al., 2006) and

parathyroid hormone (Gesty-Palmer et al., 2006) receptors, a novel paradigm was proposed

that G-protein-mediated ERK phosphorylation is very transient, whereas arrestins mediate

sustained ERK activation. The study of the M3 receptor shows that this not always the case: Luo

et al (Luo et al., 2008) demonstrated that non-visual arrestins are key players in M3 receptor

desensitization, but detected no arrestin-dependent ERK activation via endogenous M3 receptor.

Interestingly, in this case G protein-mediated ERK phosphorylation was sustained for up to 60

min, and was further enhanced and prolonged by knockdown of GRK2 and arrestins. Obviously,

interactions of GRKs and arrestins with multiple non-GPCR partners can significantly affect

receptor signaling. As beautifully illustrated by the work of Luo et al (Luo et al., 2008), the

actions of GRK2 in HEK293 cells on both the M3 receptor-stimulated calcium mobilization and

ERK1/2 activation are mediated by interactions with non-receptor partners, and neither involves

receptor phosphorylation.

M3 is the third receptor comprehensively studied by Dr. Benovic and colleagues in HEK293

cells (Iwata et al., 2005; Luo et al., 2008; Naik et al., 2005). The regulation of b2AR (Violin et

al., 2008; Violin et al., 2006b) and angiotensin II type 1A receptor (AT1AR) (Violin et al.,
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2006a) in these cells was extensively studied by Dr. Lefkowitz group.  It is important to note

that the only unifying conclusion of these studies is that each GPCR subtype has a unique pattern

of regulation. M3 receptor is desensitized via phosphorylation by GRKs 3, 6, and CKIa (Luo et

al., 2008) and GRK2-mediated sequestration of Gaq; histamine H1 receptor is primarily

desensitized by GRK2 via both phosphorylation and Gaq binding (Iwata et al., 2005); AT1AR

is desensitized by GRK2 (Violin et al., 2006a); b2AR was found to be regulated by GRKs 2 and

6 when arrestin recruitment was used as a readout (Violin et al., 2006b), but predominantly by

GRK6 when cAMP response was measured instead (Violin et al., 2008); whereas desensitization

as well as arrestin-independent internalization of CL1R requires receptor phosphorylation by

PKC (Naik et al., 2005). Unexpectedly, arrestin recruitment to b2AR in HEK293 cells does not

appear to correlate with the bulk of receptor phosphorylation, suggesting that as far as arrestin is

concerned, GRK phosphorylation sites are not equivalent (Violin et al., 2006b). Remarkably,

GRK5, which is one of the two most abundant GRKs in HEK293 cells, does not appear to

participate in the regulation of any of these receptors. Interestingly, GRK3 was found to play

more prominent role in b2AR desensitization in U2-OS osteosarcoma cells that express higher

levels of this isoform than in HEK293 cells (Violin et al., 2006b). These data bring up an

important question of receptor specificity of GRK isoforms, which is usually considered only in

terms of preferential phosphorylation of certain GPCR subtypes by a particular GRK. However,

because GRKs have functional capabilities that do not involve the kinase activity, this issue is

much more complex. For example, RGS domain of GRKs 2 and 3 sequesters GTP-liganded

Gaq/11, but not a-subunits of other G proteins. Therefore, this mechanism of GRK2/3 action is

specific for Gq/11-dependent signaling pathways. The same two GRKs bind bg-dimers

suppressing bg-mediated signal transduction often important in signaling mediated by a different
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group of G proteins, Gi/o subfamily. In addition, the ability of GRK2 to inhibit ERK1/2

activation by MEK1 makes this mechanism specific for the pathways that involve the MEK1-

ERK1/2 module. In most studies, in contrast to the work of Luo et al (Luo et al., 2008), the

actual mechanism of GRK-dependent suppression of receptor signaling was not determined.

In mammals, four ubiquitously expressed GRKs (GRKs 2,3,5, and 6), as well as the more

restricted GRK4, are available to regulate more than 700 GPCR subtypes. Obviously, 1:1

specificity for receptors is out of the question. However, it does not mean that GRK isoforms are

simply redundant, e.g., can regulate any GPCR in the same manner. In vitro experiments using

GRK overexpression often show that many GRK isoforms are able to promote desensitization

and trafficking of various GPCRs. However, in vivo studies with knockout and transgenic mice

provided evidence for unexpectedly strict receptor specificity of different GRKs. For example,

the elimination of GRK6 causes behavioral supersensitivity to dopaminergic stimulation

(Gainetdinov et al., 2003), whereas knockout of its closest relative GRK5 does not alter

dopaminergic signaling (Gainetdinov et al., 1999). Instead, the loss of GRK5 enhances central

responses to muscarinic stimulation (hypothermia, tremor, salivation, and locomotion) without

affecting responsiveness to the m-opioid or 5-HT1A receptor stimulation (Gainetdinov et al.,

1999). Mice lacking GRK3, 5, or 6 have relatively mild phenotypes, indicating that to a certain

extent the remaining GRKs can take over the functions of the missing isoform. However, the fact

that knockout of GRK2 is embryonic lethal (Jaber et al., 1996) proves that it has functions that

cannot be performed by any other member of the family. At the same time, knockout of GRK3,

the isoform remarkably similar to GRK2 structurally and biochemically (Arriza et al., 1992;

Willets et al., 2003), produces only very mild neuronal phenotype (Gainetdinov et al., 2004). In

some cases, apparent receptor specificity is based on specific cellular complement of GRK
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isoforms. For example, the loss of the odorant receptor desensitization in GRK3 knockout mice

(Peppel et al., 1997) is due to the fact that GRK3 is the major, if not the only, isoform expressed

in the olfactory epithelium. Nonetheless, even when multiple GRKs are expressed in the same

cell, they often only regulate specific receptors and/or regulate the same GPCR via distinct non-

overlapping mechanisms. For example, GRKs 2 and 3 are expressed in cardiac myocytes at

similar levels, but GRK2 is primarily responsible for regulation of the b-adrenergic and

angiotensin receptors (Vinge et al., 2007). In contrast, GRK3 does not seem to regulate b-

adrenergic signaling, but appears to control a1-adrenergic and endothelin receptors in these cells

(Eckhart et al., 2000; Vinge et al., 2007). This receptor specificity of GRKs 2 and 3 defines the

biological role of each isoform in different aspects of heart function: GRK2 is the key player in

the heart development and heart failure (Hansen et al., 2006; Jaber et al., 1996), whereas GRK3

is important for the control of the cardiac growth and hypertrophy (Vinge et al., 2007; Vinge et

al., 2008). The work by Dr. Benovic’s group lends further support for the idea that receptors are

preferentially regulated by specific GRK isoforms. Moreover, when multiple GRKs regulate

signaling by the same receptor, functional consequences differ depending on the isoform

involved. Luo at al (Luo et al., 2008) found that knockdown of GRK2, 3, or 6 similarly enhances

calcium mobilization via M3 receptor, whereas ERK activation by the same receptor was not

affected by the GRK3 knockdown. It is remarkable that even though GRK2 and GRK5 are the

two major isoforms in HEK293 cells, one regulates M3 muscarinic receptor without actually

phosphorylating it, whereas the other does not affect it at all. These findings clearly show that

when GRKs are expressed at physiological levels, different isoforms demonstrate pronounced

receptor specificity. It is also clear that virtually every cell expresses multiple GRKs and many
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GPCRs. Therefore, the mere fact of coexpression does not mean that specific GRK isoform is in

any way involved in the regulation of a particular receptor.

The situation with arrestins is even more intriguing, since there are only two ubiquitous

isoforms, arrestin2 and 3, each represented by two splice variants (Sterne-Marr et al., 1993). In

some tissues, particularly in the brain, the concentration of arrestin2 is many times higher than

that of arrestin3, and this difference becomes more dramatic during development (Ahmed et al.,

2008a; Ahmed et al., 2008b; Gurevich et al., 2002; Gurevich et al., 2004). The knockout of

arrestin2 causes slightly increased responsiveness to b-adrenergic stimulation in the heart

(Conner et al., 1997) and no enhanced  behavioral responses to dopaminergic or m-opioid drugs

(Gainetdinov et al., 2004). In contrast, the ablation of arrestin3 elevates antinociceptive and

rewarding effects of morphine, reduces tolerance to morphine, and increases m-opioid receptor

coupling to G proteins (Bohn et al., 2000; Bohn et al., 2003; Bohn et al., 1999). In the study of

Luo et al (Luo et al., 2008), knockdown of either arrestin enhanced carbachol-induced calcium

mobilization and ERK phosphorylation, although only the knockdown of arrestin3 resulted in

prolonged ERK activation. Thus, the two non-visual arrestins are certainly non-redundant.

Strong evidence of receptor and functional specificity of different arrestins and GRKs in vitro

and in vivo is rapidly accumulating. It is becoming increasingly clear that, in addition to the

nature of the receptor, many other factors contribute to the functional performance of individual

arrestins and GRKs.  Relative intracellular concentrations and the complement of arrestin and

GRK isoforms in the cell, the subcellular distribution of the receptor and particular arrestins and

GRKs, as well as the expression levels other signaling proteins all play a role. The precise

experimental elucidation of the functional repertoire of each GRK and arrestin will significantly

contribute to our ability to unravel the exceedingly complex cellular signaling network.
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In the last two decades, the key molecular mechanisms of GPCR signaling and its regulation

have been elucidated. In the process, we learned that there is no such thing as a generic receptor,

generic GRK, or a generic cell. The evolution endowed mammals with ~1,000 different GPCRs

(Rompler et al., 2007) that are phosphorylated by seven GRKs (Moore et al., 2007) and a

number of other kinases (Budd et al., 2000; Luo et al., 2008; Naik et al., 2005) and interact

with four arrestin subtypes (Gurevich and Gurevich, 2006b). Each tissue and cell has a unique

complement of receptors (Penn et al., 2001), GRKs and arrestins (Ahmed et al., 2008a;

Ahmed et al., 2008b; Bychkov et al., 2008; Gurevich et al., 2002; Penn et al., 2001; Violin

et al., 2006b) that changes, sometimes quite dramatically, during development (Gurevich et al.,

2002; Gurevich et al., 2004), disease (Ahmed et al., 2008a; Bychkov et al., 2008), and drug

treatment (Ahmed et al., 2008b). To make matters even more complicated, phosphorylation of

the same receptor at different sites (Jones and Hinkle, 2008; Key et al., 2003; Lee et al., 2000;

Pals-Rylaarsdam et al., 1997), by different GRKs (Kim et al., 2005; Luo et al., 2008; Ren et al.,

2005; Violin et al., 2006b), or even by the same GRK to different levels (Vishnivetskiy et al.,

2007) generates functionally distinct receptor species that bind arrestins with different biological

consequences. Apparently, thousands of distinct patterns of signaling and regulation generated

by this variety are necessary for survival. We have a huge task of elucidating these patterns for

each receptor in every cell type where it is endogenously expressed to understand the biological

significance of each thread in this incredibly rich tapestry of signaling regulation.
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