Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

The Neuroactive Steroid Pregnenolone Sulfate Stimulates Trafficking of Functional NMDA Receptors to the Cell Surface via a Non-Canonical G-Protein and Ca++ Dependent Mechanism

Emmanuel Kostakis, Conor Smith, Ming-Kuei Jang, Stella C Martin, Kyle G Richards, Shelley J Russek, Terrell T Gibbs and David H Farb
Molecular Pharmacology May 28, 2013, mol.113.085696; DOI: https://doi.org/10.1124/mol.113.085696
Emmanuel Kostakis
Boston University School of Medicine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Conor Smith
Boston University School of Medicine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ming-Kuei Jang
Boston University School of Medicine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stella C Martin
Boston University School of Medicine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kyle G Richards
Boston University School of Medicine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shelley J Russek
Boston University School of Medicine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Terrell T Gibbs
Boston University School of Medicine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David H Farb
Boston University School of Medicine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

NMDA receptors (NMDARs) mediate fast excitatory synaptic transmission and play a critical role in synaptic plasticity associated with learning and memory. NMDAR hypoactivity has been implicated in the pathophysiology of schizophrenia, and clinical studies reveal reduced negative symptoms of schizophrenia with a dose of pregnenolone that elevates serum levels of the neuroactive steroid pregnenolone sulfate (PregS). This report describes a novel process of delayed onset potentiation whereby PregS approximately doubles the cell's response to NMDA via a mechanism that is pharmacologically and kinetically distinct from rapid positive allosteric modulation by PregS. The number of functional cell surface NMDARs in cortical neurons increases 60 -100% within 10 min of exposure to PregS as shown by surface biotinylation and affinity purification. Delayed onset potentiation is reversible and selective for expressed receptors containing the NR2A or NR2B, but not NR2C or NR2D, subunits. Moreover, substitution of NR2B J-K helices and M4 domain with the corresponding region of NR2D ablates rapid allosteric potentiation of the NMDA response by PregS but not delayed onset potentiation. This demonstrates that the initial phase of rapid positive allosteric modulation is not a first step in NMDAR upregulation. Delayed onset potentiation by PregS occurs via a non- canonical, pertussis toxin sensitive G-protein coupled and Ca2+ dependent mechanism that is independent of NMDAR ion channel activation. Further investigation into the sequelae for PregS stimulated trafficking of NMDARs to the neuronal cell surface may uncover a new target for the pharmacological treatment of disorders in which NMDAR hypofunction has been implicated.

  • Glutamate
  • Phospholipase C's
  • IP3/DAG
  • Calcium (G Protein Coupled Signals)
  • Protein Kinase C
  • Receptor synthesis/trafficking
  • Fluorescence techniques
  • The American Society for Pharmacology and Experimental Therapeutics
Next
Back to top

In this issue

Molecular Pharmacology: 103 (4)
Molecular Pharmacology
Vol. 103, Issue 4
1 Apr 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Neuroactive Steroid Pregnenolone Sulfate Stimulates Trafficking of Functional NMDA Receptors to the Cell Surface via a Non-Canonical G-Protein and Ca++ Dependent Mechanism
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

The Neuroactive Steroid Pregnenolone Sulfate Stimulates Trafficking of Functional NMDA Receptors to the Cell Surface via a Non-Canonical G-Protein and Ca++ Dependent Mechanism

Emmanuel Kostakis, Conor Smith, Ming-Kuei Jang, Stella C Martin, Kyle G Richards, Shelley J Russek, Terrell T Gibbs and David H Farb
Molecular Pharmacology May 28, 2013, mol.113.085696; DOI: https://doi.org/10.1124/mol.113.085696

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

The Neuroactive Steroid Pregnenolone Sulfate Stimulates Trafficking of Functional NMDA Receptors to the Cell Surface via a Non-Canonical G-Protein and Ca++ Dependent Mechanism

Emmanuel Kostakis, Conor Smith, Ming-Kuei Jang, Stella C Martin, Kyle G Richards, Shelley J Russek, Terrell T Gibbs and David H Farb
Molecular Pharmacology May 28, 2013, mol.113.085696; DOI: https://doi.org/10.1124/mol.113.085696
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics