Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Activity of adenylyl cyclase type 6 is suppressed by direct binding of the cytoskeletal protein 4.1G

Masaki Saito, Linran Cui, Marina Hirano, Guanjie Li, Teruyuki Yanagisawa, Takeya Sato and Jun Sukegawa
Molecular Pharmacology August 5, 2019, mol.119.116426; DOI: https://doi.org/10.1124/mol.119.116426
Masaki Saito
1 Tohoku University School of Medicine;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Masaki Saito
Linran Cui
1 Tohoku University School of Medicine;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marina Hirano
2 Shokei Gakuin University;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guanjie Li
1 Tohoku University School of Medicine;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Teruyuki Yanagisawa
3 Tohoku Fukushi University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takeya Sato
1 Tohoku University School of Medicine;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jun Sukegawa
2 Shokei Gakuin University;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

The G protein-coupled receptor (GPCR) signaling pathways mediated by trimeric G proteins have been extensively elucidated, but their associated regulatory mechanisms remain unclear. Parathyroid hormone (PTH)/PTH-related protein receptor (PTHR) is a GPCR coupled with Gs and Gq. Gs activates adenylyl cyclases (ACs), which produces 3', 5'-cyclic adenosine monophosphate (cAMP) to regulate various cell fates. We previously showed that cell surface expression of PTHR was increased by its direct interaction with a subcortical cytoskeletal protein, 4.1G, whereas PTHR-mediated Gs/AC/cAMP signaling was suppressed by 4.1G through an unknown mechanism in HEK293 cells. In the present study, we found that AC type 6 (AC6), one of the major ACs activated downstream of PTHR, interacts with 4.1G in HEK293 cells, and the N-terminus of AC6 (AC6-N) directly and selectively binds to the FERM domain of 4.1G (4.1G-FERM) in vitro. AC6-N was distributed at the plasma membrane, which was disturbed by knockdown of 4.1G. An AC6-N mutant, AC6-N-3A, wherein three consecutive arginine residues were mutated to alanine residues, altered both binding to 4.1G-FERM and its plasma membrane distribution in vivo. Further, we overexpressed AC6-N to competitively inhibit the interaction of endogenous AC6 and 4.1G in cells. cAMP production induced by forskolin, an adenylyl cyclase activator, and PTH-(1-34) was enhanced by AC6-N expression and 4.1G-knockdown. In contrast, AC6-N-3A had no impact on forskolin- and PTH-(1-34)-induced cAMP productions, respectively. These data provide a novel regulatory mechanism that AC6 activity is suppressed by the direct binding of 4.1G to AC6-N, resulting in attenuation of PTHR-mediated Gs/AC6/cAMP signaling.

SIGNIFICANCE STATEMENT This study investigated the mechanism by which PTHR controls adenylyl cyclase 6 activity through their direct interaction with the cytoskeletal protein, 4.1G. We believe that our study makes a significant contribution to the literature due to the diverse and central roles of adenylyl cyclases in driving cellular processes and the identification of a novel mechanism by which adenylyl cyclase 6 activity is effectively tuned without altering its location at the plasma membrane.

  • Adenylyl cyclase
  • cAMP
  • Cytoskeleton
  • G protein-coupled receptors (GPCRs)
  • Kidney
  • Parathyroid hormone (PTH)
  • Protein-protein interactions
  • Renal excretion
  • Signal transduction networks
  • The American Society for Pharmacology and Experimental Therapeutics
Next
Back to top

In this issue

Molecular Pharmacology: 99 (3)
Molecular Pharmacology
Vol. 99, Issue 3
1 Mar 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Activity of adenylyl cyclase type 6 is suppressed by direct binding of the cytoskeletal protein 4.1G
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Activity of adenylyl cyclase type 6 is suppressed by direct binding of the cytoskeletal protein 4.1G

Masaki Saito, Linran Cui, Marina Hirano, Guanjie Li, Teruyuki Yanagisawa, Takeya Sato and Jun Sukegawa
Molecular Pharmacology August 5, 2019, mol.119.116426; DOI: https://doi.org/10.1124/mol.119.116426

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Activity of adenylyl cyclase type 6 is suppressed by direct binding of the cytoskeletal protein 4.1G

Masaki Saito, Linran Cui, Marina Hirano, Guanjie Li, Teruyuki Yanagisawa, Takeya Sato and Jun Sukegawa
Molecular Pharmacology August 5, 2019, mol.119.116426; DOI: https://doi.org/10.1124/mol.119.116426
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Identification of Celecoxib targets by label-free TPP
  • Editing TOP2α Intron 19 5′ SS Circumvents Drug Resistance
  • CTS Bias
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics