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 3 

 

Abstract  

Equilibrative nucleoside transporters (ENTs) are present at the blood-testis barrier (BTB), where 

they can facilitate antiviral drug disposition to eliminate a sanctuary site for viruses detectable in 

semen. The purpose of this study was to investigate ENT-drug interactions with three 

nucleoside analogs remdesivir, molnupiravir and its active metabolite, EIDD-1931 and four non-

nucleoside molecules repurposed as antivirals for COVID-19. The study used 3D 

pharmacophores for ENT1 and ENT2 substrates and inhibitors and Bayesian machine learning 

models to identify potential interactions with these transporters. In vitro transport experiments 

demonstrated that remdesivir was the most potent inhibitor of ENT-mediated [3H] uridine uptake 

(ENT1 IC50: 39 M; ENT2 IC50: 77 M), followed by EIDD-1931 (ENT1 IC50: 259 M; ENT2 IC50: 

467 M), while molnupiravir was a modest inhibitor (ENT1 IC50: 701 M; ENT2 IC50: 851 M). 

Other proposed antivirals failed to inhibit ENT-mediated [3H] uridine uptake below 1 mM. 

Remdesivir accumulation decreased in the presence of NBMPR by 30% in ENT1 cells (p = 

0.0248) and 27% in ENT2 cells (p = 0.0054). EIDD-1931 accumulation decreased in the 

presence of NBMPR by 77% in ENT1 cells (p = 0.0463 ) and by 64% in ENT2 cells (p = 

0.0132), supporting computational predictions that both are ENT substrates which may be 

important for efficacy against COVID-19. NBMPR failed to decrease molnupiravir uptake, 

suggesting that ENT interaction is likely inhibitory. Our combined computational and in vitro data 

can be used to identify additional ENT-drug interactions to improve our understanding of drugs 

that can circumvent the BTB. 

Significance statement: This study identified remdesivir and EIDD-1931 as substrates of  

equilibrative nucleoside transporters 1 and 2. This provides a potential mechanism for 

uptake of these drugs into cells and may be important for antiviral potential in the testes 

and other tissues expressing these transporters. 
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 4 

 

Introduction 

The blood-testis barrier (BTB) protects developing germ cells and some of the key components 

of this barrier are the tight junctions between the epithelial cells of the testis and efflux 

transporters present at the basal membrane of Sertoli cells (Mruk et al., 2011; Mruk and Cheng, 

2015). The BTB can limit drug disposition and immune cell access to the male genital tract 

(MGT), creating an important sanctuary site where viruses can persist and potentially remain 

transmissible after drug treatment (Politch et al., 2012; Houzet et al., 2014; Soka et al., 2016; 

Uyeki et al., 2016; Deen et al., 2017; Robinson et al., 2018). Therapeutics that readily bypass 

this barrier may more effective at treating viruses and inform the design and development of 

new antivirals that are able to reach sanctuary sites such as the testes.  

 

The equilibrative nucleoside transporters (ENT1 and ENT2) are ubiquitously expressed proteins 

that transport endogenous nucleosides across cell membranes. Due to similarity in chemical 

structure, the ENTs are thought to transport nucleoside/tide analogs. Recent studies have 

identified additional non-nucleoside analog antivirals, including darunavir and nevirapine, that 

interact with the ENTs (Miller et al., 2021a; Miller et al., 2021b). Didanosine and ribavirin are two 

ENT substrates that are detectable in the semen of patients prescribed these drugs (Lowe et al., 

2007; Hofer et al., 2010). The transepithelial transport pathway that is created by ENT1 on the 

basal membrane of Sertoli cells and ENT2 on the apical membrane of Sertoli cells provide a 

mechanism for antivirals that are substrates of these transporters to cross the BTB (Klein et al., 

2013).  
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 5 

Repurposing molecules as broad-spectrum antivirals has the potential to bypass drug discovery 

and development, enabling these compounds to reach patients quicker. Computational and in 

vitro approaches implemented early in the research and development process can also reduce 

the likelihood of undesirable off-target effects later in the process (Kola and Landis, 2004; 

Bowes et al., 2012). Remdesivir is a nucleoside analog that was initially developed to treat 

hepatitis C virus.  It was subsequently repurposed to treat Ebola virus and has since 

demonstrated activity against other RNA viruses, including SARS-CoV-2 (Siegel et al., 2017; 

Mulangu et al., 2019; Eastman et al., 2020), for which it is FDA approved. Molnupiravir is 

currently being evaluated for the treatment of COVID-19 (Cox et al., 2021; National Clinical Trial 

04405739). Additionally, there is continued interest in exploring other known inhibitors of the 

Ebola virus including tilorone, pyronaridine, quinacrine, and controversially, hydroxychloroquine 

(Ekins et al., 2017; Sagara et al., 2018; Ekins et al., 2019; Lane et al., 2019; Bailly, 2020; Baker 

et al., 2020; Ekins et al., 2020; Ekins and Madrid, 2020; Lane et al., 2020a; Lane and Ekins, 

2020; Lane et al., 2020b; Naghipour et al., 2020; Puhl et al., 2020) as potential treatments for 

COVID-19. SARS-CoV-2 is detectable in the semen of patients (Li et al., 2020). Ebola virus is 

also sexually transmitted (Malvy et al., 2019), therefore, it is essential that treatments for this 

virus and other sexually transmitted viruses (e.g. HIV) are able to reach the site of transmission. 

There are monoclonal antibody treatments for Ebola virus but none are small molecule 

treatments approved to date (Kaplon and Reichert, 2021; Markham, 2021) or specifically 

focused on reaching the virus sanctuary sites.   

 

The purpose of this study was to investigate interactions of the antiviral drugs remdesivir, 

tilorone, pyronaridine, quinacrine, hydroxychloroquine, molnupiravir and its active metabolite 

EIDD-1931 (β-D-N4-Hydroxycytidine), with ENT1 and ENT2 using computational approaches, 

and validating the results using previously established in vitro methods to identify substrates 
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 6 

and inhibitors of the ENTs (Miller et al. 2021a; Miller et al. 2021b). The computational methods 

and transport experiments were completed in an exploratory manner. Identifying drugs which 

are both effective in treating sexually transmitted viruses and are substrates of the ENTs could 

be useful as drugs to prevent further sexual transmission, viral relapse after treatment, and 

elucidate the broader roles of these transporters in drug disposition.  

 

Materials and Methods  

Reagents 

[3H]Uridine (specific activity 35.8 Ci/mmol) and MicroScint-20 scintillation cocktail were 

purchased from Perkin-Elmer (Waltham, MA). Remdesivir, molnupiravir, EIDD-1931 (β-D-N4-

Hydroxycytidine), cladribine, tilorone, and quinacrine were purchased from Cayman Chemical 

(Ann Arbor, MI). Pyronaridine tetraphosphate. [4-[(7-Chloro-2-

methoxybenzo[b][1,5]naphthyridin-10-yl)amino]-2,6-bis(1-pyrrolidinylmethyl)phenol phosphate 

(1:4)] was purchased from BOC Sciences (Shirley, NY). The purity of these compounds is 

greater than 95%. Hydroxychloroquine was purchased from Sigma Aldrich (St. Lois, MO). (6-S-

[(4-Nitrophenyl)methyl]-6-thioinosine) (NBMPR) was purchased from Tocris Bioscience (Bristol, 

UK). Poly-L-lysine (10 mg/mL) was purchased from Sciencell (Carlsbad, CA). Additonal 

reagents were purchased from Thermo Fisher Scientific (Waltham, MA). 

 

Ligand-Based Substrate and Inhibitor Pharmacophores 

Three-dimensional (3D) quantitative structure activity relationship (QSAR) pharmacophores 

previously generated for ENT1 and ENT2 using Discovery Studio (Biovia, San Diego, CA) were 

used to score transporter interactions with the antivirals in this study (Miller et al., 2021a). For 

pharmacophores, known substrates with reported Kt values were used to measure biological 

activity and IC50 values were used as a measure of biological activity for inhibitor 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on September 9, 2021 as DOI: 10.1124/molpharm.121.000333

 at A
SPE

T
 Journals on A

pril 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


 7 

pharmacophores. Hydrogen bond acceptor, hydrogen bond donor, hydrophobic, positive 

ionizable and negative ionizable features were selected for pharmacophore generation. A more 

detailed description on ENT ligand-based pharmacophore generation has been previously 

provided (Miller et al., 2021a). Mapping of compounds to ligand-based pharmacophores was 

completed in an exploratory manner. 

 

Assay Central Bayesian Models 

Assay Central Bayesian models were generated using a ChEMBL training set containing ENT1 

IC50 values that was previously described, and data curated from the literature (Miller et al., 

2021a; Miller et al., 2021b). These models were generated to predict ENT1 activity from 

chemical structures. The ChEMBL training set used was Target ID 1997 

(https://www.ebi.ac.uk/chembl/target_report_card/CHEMBL1997). Active compounds are 

predicted to interact with the ENTs, while inactive compounds are predicted to not interact with 

the ENTs. Thresholds for actives/inactives were 2 M for the ChEMBL model, 316 mM for the 

model generated using previously published data by our group, and 0.66 M for the ENT1 

model using literature data and 13 M for the ENT2 model using literature data (Miller et al., 

2021a; Miller et al., 2021b). These Bayesian models were used to generate prediction and 

applicability scores that predict the activity of remdesivir, tilorone, pyronaridine, quinacrine, 

hydroxychloroquine, and molnupiravir. Further details on the ENT Assay Central Bayesian 

models can be found in earlier publications (Sandoval et al., 2018; Miller et al., 2021a; Miller et 

al., 2021b). Prediction and applicability scores for each compound were completed in an 

exploratory manner.  

 

Cell Culture 
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 8 

HeLa ENT cells that functionally express either ENT1 or ENT2 were generated from wild-type 

HeLa S3 CCL-2.2 cells using CRISPR/Cas9 and were maintained according to the same 

culturing protocol for wild-type HeLa S3 CCL-2.2 cells provided by ATCC (Miller et al., 2021a; 

Miller et al., 2021b). ENT cells were grown in Ham’s F12K medium containing 1.5 g/L sodium 

bicarbonate, 1% v/v penicillin/streptomycin, and 10% v/v fetal bovine serum. Cells were kept at 

37°C in a humidified 5% CO2 incubator. Cells were routinely tested for potential mycoplasma 

contamination. ENT1 and ENT2 cells were characterized in a previous publication (Miller et al., 

2021b). In ENT1 cells, functional loss of ENT2 is a result of a deletion in exon 1. In ENT2 cells, 

functional loss of ENT1 is a result of a deletion in exon 5 (Miller et al., 2021b). 100 nM NBMPR 

eliminates [3H] uridine uptake in ENT1 cells, and 100 M NBMPR eliminates [3H] uridine in 

ENT2 cells  (Miller et al., 2021b). 

 

Transport Experiments 

Experiments were performed as described previously (Miller et al., 2021a; Miller et al., 2021b) 

and/except HeLa ENT cells were seeded one day prior to experiments in poly-L-lysine coated 

96 well plates at 35,000 cells/well. All experiments were conducted with confluent cell 

monolayers at room temperature (n=3). Transport buffers were made in Waymouth’s Buffer 

(WB; 2.5 mM CaCl2H2O, 28 mM D-glucose, 13 mM HEPES, 135 mM NaCl, 1.2 mM MgCl2, 0.8 

mM MgSO47H2O, pH 7.4). Fresh transport buffers solutions were prepared for each 

experiment. All transport experiments were completed in an exploratory manner. Remdesivir 

stocks were prepared in 100% DMSO and carefully diluted into transport buffer with a final 

concentration of 2% v/v DMSO. Preliminary studies established that 2% v/v DMSO in transport 

buffer does not interfere with transport experiments in these cells. Cells were washed twice with 

WB and then 50 L of transport buffer containing 1 Ci/mL (~30 nM) [3H]uridine and increasing 

concentrations of antiviral drug was added to cells. Transport was terminated after five minutes 
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by rinsing cells three times with WB. 200 L of liquid scintillation cocktail was added to cells 

before determining total accumulated radioactivity using a liquid scintillation counter. Transport 

experiments were completed in an exploratory manner. For transport experiments with LC-

MS/MS, no [3H]uridine was included in the transport buffer. Based on the calculated IC50 values 

for remdesivir, molnupiravir, and EIDD-1931, 50 M remdesivir was used for remdesivir 

accumulation experiments, 500 M molnupiravir was used for molnupiravir accumulation 

experiments, and 250 M EIDD-1931 was used for EIDD-1931 accumulation experiements. 

After terminating transport, samples were prepared for LC-MS/MS by adding 50 L of 1:1 

methanol:acetonitrile to cells containing 100 ng/mL of internal standard (IS; cladribine) and 

incubated overnight at 4°C (Miller et al., 2021a; Miller et al., 2021b). Calibration curves were 

prepared identical to samples. Remdesivir and molnupiravir samples were dried and 

resuspended in 50 L of 90:10 H2O:ACN + 0.1% formic acid.  

 

LC-MS/MS Detection and Quantification  

A Shimadzu Prominence HPLC system (Shimadzu, Kyoto, Japan) coupled to a SCIEX QTRAP 

4500 mass spectrometer (SCIEX, Framingham, MA) was used. 10 μL of sample was injected 

onto an Agilent Poroshell 120 C18 column. Supplemental Table 2 contains MRM transitions and 

instrumental parameters. Separate methods were developed and used for the detection of 

remdesivir and molnupiravir. Remdesivir and molnupiravir were detected in positive ion mode 

and separated over a binary gradient of water with 0.1% formic acid (A) and acetonitrile with 

0.1% formic acid (B) at a flow rate of 0.3 mL/min. For remdesivir:  10% B (0-1 min), 10 to 90% B 

(1-3 min), 90% B (3-4 min), 90 to 10% B (4-4.5 min), and 10% B (4.5-6 min). For molnupiravir: 

10% B (0-1 min), 10 to 90% B (1-3 min), 90% B (3-4 min), 90 to 10% B (4-4.5 min), and 10% B 

(4.5-6 min). The column was equilibrated with 10% B for 0.5 minutes between remdesivir 

samples and molnupiravir samples. EIDD-1931 was detected in positive ion mode and 
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 10 

separated over a binary gradient of water with 0.1% formic acid (A) and acetonitrile with 0.1% 

formic acid (B) at a flow rate of 0.4 mL/min. For EIDD-1931: 2.5% B (0-1 min), 2.5 to 90% B (1-4 

min), 90% B (4-4.5 min), 90 to 10% B (4.5 to 5 min). The column was equilibrated with 2.5% B 

for 2 minutes between EIDD-1931 samples. Data was analyzed using MultiQuant MD 3.0.2 

before statistical analysis was completed using GraphPad Prism version 9.0.  

 

Data Analysis 

All transport experiments were done in duplicate using three separate cell passages (n=3). Data 

from LC-MS/MS transport experiments was converted from ng/mL to pmol cm-2 (nominal cell 

surface area). Data are reported as mean and standard deviation. The IC50 value of remdesivir, 

tilorone, pyronaridine, quinacrine, and hydroxychloroquine on ENT1- and ENT2- mediated 

[3H]uridine uptake, was calculated using Equation 1 for each individual experiment (Miller et al., 

2021a; Miller et al., 2021b). 

 

Equation 1: J = [(Japp-max* T) / (IC50 + [S])] + (Kd * T) 

 

In Equation 1, J is total uridine transport, Japp-max is a constant (Jmax times the ratio of the IC50 for 

the antiviral and the Kt for uridine), T is [3H]uridine concentration and S is antiviral concentration. 

To compare ENT1 and ENT2 IC50 values for each experiment, an unpaired t-test (p < 0.05) was 

used. Antiviral uptake studies in the presence and absence of NBMPR were compared using an 

unpaired, two-tailed t-test (p < 0.05). Due to the exploratory nature of experiments, the 

outcomes of all statistical tests are descriptive. Means and statistical tests were based on 

technical replicates. 

 

Results 

Ligand-Based Substrate and Inhibitor Pharmacophores 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on September 9, 2021 as DOI: 10.1124/molpharm.121.000333

 at A
SPE

T
 Journals on A

pril 20, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


 11 

Table 1 reports fit values and estimated Kt and IC50 values for antivirals mapped to the ENT 

substrate and inhibitor pharmacophores. Remdesivir had the highest fit value to the ENT1 and 

ENT2 substrate pharmacophores (Figure 1A, 1D). Additionally, remdesivir had the highest fit 

value for both ENT1 and ENT2 inhibitor pharmacophores (Figure 2A, 2D). Molnupiravir also had 

high fit values to the ENT substrate and inhibitor pharmacophores (Figure 1B, 1E, 2B, 2E). 

Remdesivir had the lowest estimated Kt values for ENT1 and ENT2 (Table 1). 

 

Assay Central Bayesian Models 

Bayesian models were generated using the ENT1 inhibitor data set from ChEMBL, previously 

published data from our laboratory, and data curated from literature searches on ENT1 and 

ENT2 interactions  (Miller et al., 2021a; Miller et al., 2021b). Each model had different 

automatically calculated thresholds to consider a compound as active or inactive. While these 

vary, the ROC values are very good (i.e. >0.8), while the two binary dataset ROC values (Figure 

3B and 3C) are acceptable (approximately 0.71), likely a product of their smaller size in 

comparison to the others. The calculated thresholds however, produce a ratio of actives to 

inactives that is encouraging, especially as Bayesian algorithms have been shown to be well-

suited to handle unbalanced datasets in our various earlier studies (Clark et al., 2015; Clark and 

Ekins, 2015). Prediction scores > 0.5 designated a compound as active. Prediction and 

applicability scores for remdesivir, molnupiravir, tilorone, pyronaridine, quinacrine, and 

hydroxychloroquine are included in Supplemental Table 1.  

 

Inhibitory Interactions with ENT1 and ENT2 

The IC50 values of remdesivir, molnupiravir, EIDD-1931, tilorone, pyronaridine, quinacrine, and 

hydroxychloroquine on ENT1 and ENT2-mediated [3H]uridine uptake were calculated using 

Equation 1 and reported in Table 2. Remdesivir was the most potent inhibitor of both ENT1 (IC50 

38 ± 2 µM) and ENT2 (IC50 73 ± 14 µM) and calculated IC50 values were different for ENT1 and 
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ENT2 (p = 0.0106). EIDD-1931 was the second most potent inhibitor of both transporters (ENT1 

IC50 259 ± 118 µM; ENT2 IC50 467 ± 101 µM) and calculated IC50 values were similar (p = 

0.0806). Molunpiravir was the third most potent inhibitor of both transporters (ENT1 IC50 701 ± 

294 µM; ENT2 IC50 851 ± 152 µM) and calculated IC50 values were similar for ENT1 and ENT2 

(p = 0.4749) Tilorone, pyronaridine, quinacrine, and hydroxychloroquine did not inhibit ENT1 or 

ENT2-mediated [3H]uridine uptake well; calculated IC50 values were greater than 900 µM, with 

most being greater than 2 mM. There was no difference in calculated IC50 values for tilorone (p 

= 0.1063), quinacrine (p = 0.1377) or hydroxychloroquine (p = 0.3847), however, there was a 

difference in calculated IC50 values for pyronaridine (p = 0.0052). 

 

Remdesivir, Molnupiravir, and EIDD-1931 Transport  

The accumulation of remdesivir and molnupiravir in ENT1 and ENT2 cells in the presence and 

absence of 100 µM NBMPR was determined. Remdesivir accumulation decreased in the 

presence of NBMPR by 30% in ENT1 cells (90.4 + 6.42 pmol cm-2 remdesivir vs. 63.9 +11.4 

pmol cm-2 remdesivir; p = 0.0248) and by 27% in ENT2 cells (103 + 8.25 vs. 75.9 + 2.80 pmol 

cm-2 remdesivir; p = 0.0054). Molnupiravir accumulation did not decrease in the presence of 

NBMPR in ENT1 cells (30.4 + 2.10 vs. 31.7 + 5.77 pmol cm-2 molnupiravir; p = 0.7248) or ENT2 

cells (32.1 + 3.90 vs. 31.8 + 5.90 pmol cm-2 molnupiravir; p = 0.9431). EIDD-1931 accumulation 

decreased in the presence of NBMPR by 77% in ENT1 cells (90.6 + 41.8 vs. 20.9 + 6.70 pmol 

EIDD-1931 cm-2; p = 0.0463) and by 64% in ENT2 cells (74.1 + 13.4 vs. 26.8 + 13.8 pmol cm-2; 

p = 0.0132)  

 

Discussion 

We have shown for the first time that remdesivir and EIDD-1931 are substrates of ENT1 and 

ENT2, which have implications for reaching SARS-CoV-2 viral sanctuary sites. The 
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transepithelial transport pathway created by ENT1 and ENT2 in Sertoli cells provides a potential 

entry mechanism for antivirals to cross the BTB, potentially eliminating this viral sanctuary site 

(Klein et al., 2013; Miller and Cherrington, 2018). Antivirals that are transported by the ENTs not 

only have the ability to cross the BTB, but penetrate other tissues since these transporters are 

widely expressed in the human body (Pennycooke et al., 2001; Molina-Arcas M, 2009). This 

study therefore used a combination of computational (pharmacophores, Bayesian models) and 

in vitro approaches to determine if seven antivirals with activity against SARS-CoV-2 (and other 

viruses) interacted with ENT1 and ENT2. The value of computational approaches to identify 

drug-transporter interactions was demonstrated through earlier studies (Miller et al., 2021a; 

Miller et al., 2021b) and here with remdesivir and molnupiravir.  

 

Remdesivir was computationally predicted to be the most potent inhibitor of ENT1 and ENT2 

and a substrate of both transporters. Metabolites of remdesivir were not investigated because 

remdesivir needs to enter cells before intracellular conversion occurs, and the purpose of our 

study was to explore the roles of the ENTs in remdesivir uptake. We determined the IC50 values 

for seven antivirals on ENT1 and ENT2-mediated [3H] uridine uptake and measured remdesivir 

uptake in the presence of the ENT specific inhibitor, NBMPR. Remdesivir was estimated to 

inhibit ENT1 in the low nanomolar range and ENT2 in the low micromolar range. Our studies 

determined that remdesivir inhibited ENT1 and ENT2-mediated [3H]uridine uptake in the low 

micromolar range. EIDD-1931 was estimated to inhibit ENT1 and ENT2  in the low micromolar 

range and our studies determined that EIDD-1931 inhibited ENT1 and ENT2-mediated [3H] 

uridine uptake in the mid micromolar range. Additional experiments showed that remdesivir and 

EIDD-1931 are substrates of ENT1 and ENT2 (Figure 5AB, 5EF).  
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The experimentally determined IC50 values for remdesivir were slightly higher than the 

estimated Kt values (estimated Kt ENT1: 2 µM and ENT2: 41 µM). The inhibition profile of 

remdesivir and EIDD-1931 on ENT-mediated  [3H]uridine uptake  aligns with IC50 values for 

other known substrates including endogenous nucleosides and nucleoside analog drugs (Miller 

et al., 2021b). This data aligns with Bayesian model predictions at higher thresholds. The 

experimentally determined IC50 values of molnupiravir were also higher than estimated IC50 

values, and subsequent data suggested that molnupiravir’s interaction with the ENTs is limited 

to inhibition (Figure 5CD). The experimentally determined IC50 values of EIDD-1931 were higher 

than estimated Kt values (estimated Kt ENT1: 1.5 µM and ENT2: 76 µM). Tilorone, pyronaridine, 

quinacrine, and hydroxychloroquine did not interact effectively with either of the ENTs, as 

predicted with pharmacophores (though not by Bayesian models). Overall, our computational 

predictions of ENT-drug interactions generally aligned with our in vitro data. 

 

Remdesivir is currently used for the treatment of hospitalized patients with COVID-19 (Eastman 

et al., 2020; Gilead Sciences, 2020; Jorgensen et al., 2020). Once remdesivir enters cells, it is 

converted to its active metabolite by kinases (Gilead Sciences, 2020). It is a known substrate of 

organic anion transporting polypeptide (OATP) 1B1 and p-glycoprotein, and also interacts with 

OATP1B3 and OATP2B1 (Gilead Sciences, 2020; Nies et al., 2021; Telbisz et al., 2021). 

Remdesivir inhibited OATP1A2 and OATP2B1 in the low micromolar range (~4 µM) (Telbisz et 

al., 2021). Nies et al. concluded that although remdesivir is a substrate of OATP1B1, low uptake 

rates suggest that OATP1B1 is not important for uptake into hepatocytes (Nies et al., 2021). 

The identification of remdesivir as a substrate of ENT1 and ENT2 provides a potentially viable 

mechanism for remdesivir uptake into cells. The list of transporters recommended for the 

investigation of potential unwanted drug-drug interactions (U.S. Department of Health and 

Human Services, 2020) does not currently include either ENT1 or ENT2. The reported 
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maximum plasma concentrations of remdesivir after single (~7.3 µM) and multiple doses (~3.7 

µM) (Gilead Sciences, 2020; Humeniuk et al., 2021) but high plasma protein binding indicate 

there is a low potential for remdesivir to interact with these transporters in vivo. However, the 

presence of a carrier mediated pathway does provide a mechanism for remdesivir to cross the 

plasma membrane. Molnupiravir is also currently in clinical trials for the treatment of COVID-19 

(Cox et al., 2021; Wahl et al., 2021;  National Clinical Trial 04405739) and to date, there is no 

published information on molnupiravir-transporter interactions. Molnupiravir is hydrolyzed to its 

active metabolite, N4 hydroxycytidine (EIDD-1931), which currently has no known documented 

transporter interactions. The reported maximum plasma concentration of EIDD-1931 after a 

single dose study of molnupiravir was ~24.5 µM and was achieved  with a 1600 mg dose 

molnupiravir (Painter et al., 2021). Drug potency for ENTs cannot be solely interpreted based on 

determined in vitro IC50 values, and should be seen relative to expected exposure levels. In this 

study, we determined that EIDD-1931, but not molnupiravir, is a substrate of ENT1 and ENT2. 

The identification of EIDD-1931 as a substrate provides a potential mechanism for EIDD-1931 

uptake into cells and may be important for antiviral potential in the testes, and potentially reduce 

sexual transmission of viruses.  

 

This study is the first to demonstrate that ENT1 and ENT2 contribute to the cellular uptake of 

remdesivir and EIDD-1931 in vitro and may also define a key mechanistic difference in the 

ability of these specific therapeutics to directly reach viral sanctuary sites. The ENT transporters 

may similarly play a role in cellular remdesivir uptake in humans. Generation of additional data 

like this study will allow us to improve and update the computational models used in this study 

to identify drug interactions with the ENTs. Information from these models can also inform and 

facilitate the development of additional broad spectrum antivirals that may be useful for other 

viruses like HIV, Zika, and Ebola in order to address potential viral sanctuary sites.  
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Table 1: Estimated Kt values and fit values for compounds mapped to the ENT substrate 

pharmacophores and estimated IC50 values and fit values for compounds mapped to the 

ENT inhibitor pharmacophores. Tilorone, quinacrine, and pyronaridine were not 

predicted to map to the ENT1 substrate pharmacophore. 

 

Table 2: Calculated antiviral IC50 values for ENT1 and ENT2-mediated [3H] uridine uptake. 

Data are presented as mean and S.D., and – Log mean and S.D. 

 

Figure 1: ENT1 and ENT2 substrate pharmacophores. ENT1 substrate pharmacophore 

with A) remdesivir B) molnupiravir C) EIDD-1931 and D) hydroxychloroquine mapped and 

ENT2 substrate pharmacophore with E) remdesivir F) molnupiravir G) EIDD-1931 and H) 

hydroxychloroquine mapped. Grey represents excluded volumes and purple represents 

hydrogen bond donors.  

 

Figure 2: ENT1 and ENT2 inhibitor pharmacophores. ENT1 inhibitor pharmacophore with 

A) remdesivir B) molnupiravir C) EIDD-1931 and D) hydroxychloroquine mapped and 

ENT2 inhibitor pharmacophore with E) remdesivir  F) molnupiravir and G) EIDD-1931 

mapped. Grey represents excluded volumes, cyan represents hydrophobic groups, and 

green represents hydrogen bond acceptors. 

 

Figure 3: Updated Bayesian models integrating established models for ENTs with 

compounds used in this study. A) ENT1-ChEMBL model (Miller et al., 2021b) B) ENT1 

model using data from our lab (Miller et al., 2021b) C) ENT2 model using data from our 

lab (Miller et al., 2021b) D) ENT1 model using literature data (Miller et al., 2021a) and E) 

ENT2 model using literature data (Miller et al., 2021a). 
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Figure 4: Antiviral Inhibition of ENTs. Inhibition of ENT1 and ENT2 -mediated [3H] uridine 

uptake by A) remdesivir B) molnupiravir C) EIDD-1931 D) tilorone E) pyronaridine F) 

quinacrine and G) hydroxychloroquine. Data are presented as mean ± S.D, n  = 3. 

Calculated IC50 values are reported in Table 2.  

 

Figure 5: Antiviral uptake in ENT1 and ENT2 cell lines. Remdesivir (50 M) uptake in 

ENT1 (A) and ENT2 (B) cell lines. Molnupiravir (500 M) uptake in ENT1 (C) and ENT2 (D) 

cell lines. EIDD-1931 (250 M) uptake in ENT1 (E) and ENT2 (F) cell lines.  All experiments 

were terminated after 5 minutes. Data are presented as mean ± S.D, n = 3. A two-tailed 

unpaired t-test was used to determine the difference between groups with * p < 0.05. 
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Table 1 

 

 

 

 

 

 

 

ENT1 Substrate Estimate Kt (µM) Fit Value 

Remdesivir 2 6.41 

Molnupiravir 32 5.26 

EIDD-1931 1 6.61 

Hydroxychloroquine 147 4.61 

ENT2 Substrate Estimate Kt (µM) Fit Value 

Remdesivir 41 6.22 

Molnupiravir 74 5.96 
EIDD-1931 76 5.95 

Hydroxychloroquine 4,424 4.19 

Pyronaridine 13,624 3.70 

Quinacrine 19,091 3.56 

Tilorone 550,687 2.09 

ENT1 Inhibitor Estimate IC50 (µM) Fit Value 
Remdesivir 0.06 8.71 

Molnupiravir 4 6.85 

EIDD-1931 70 5.66 

Hydroxychloroquine 632 4.71 

Pyronaridine 635 4.70 

Quinacrine 633 4.70 

Tilorone 632 4.71 

ENT2 Inhibitor Estimate IC50 (µM) Fit Value 

Remdesivir 9 5.82 

Molnupiravir 7 5.75 

EIDD-1931 53 4.95 

Hydroxychloroquine 368 4.11 

Pyronaridine 411 4.07 

Quinacrine 416 4.06 

Tilorone 368 4.11 
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Table 2  

Antiviral 
ENT1  

IC50 M ± S.D. 

ENT1  

-Log (IC50) ± -
Log (S.D.) 

ENT2  

IC50 M ± S.D.  

ENT2  

-Log (IC50)  ± -
Log (S.D.) 

Remdesivir 39 ± 2  -1.6 ± -0.3  77 ± 14 - 1.9 ± -1.1 

Molnupiravir 701 ± 294 -2.8 ± -2.5 851 ± 152 -2.9 ± -2.2 

EIDD-1931 259 ± 118 -2.4 ± -2.1 467 ± 101 -2.7 ± -2.0 

Quinacrine 8494 ± 7022 -3.9 ± -3.8 950 ± 695 -3.0 ± -2.8 

Tilorone 6256 ± 2173 -3.8 ± -3.3 2943 ± 1704 -3.5 ± -3.2 

Hydroxychloroquine 9186 ± 6347 -4.0 ± -3.8 
269961 ± 
463122 

- 5.4 ± -5.6 

Pyronaridine 13676 ± 3612 -4.1 ± -3.6 1548 ± 1185 - 3.2 ± -3.1 
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Figure 3 
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Figure 4 
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Supplemental Table 1. Bayesian predictions of molecules tested herein. Green indicates 

an active prediction (i.e., >0.5), red indicates an inactive prediction, while yellow indicates 

approaching an active prediction. 
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ENT data score threshold               

ENT1 
ChEMBL + 
Literature 

(IC50) 
Prediction 100 M 0.976 -2.52 0.746 0.562 0.623 1.00 -1.06 

ENT1 
ChEMBL + 
Literature 

(IC50) 
Applicability 100 M 

IN 
MODEL 

0.777 0.515 0.500 0.476 0.519 0.7500 

ENT1 
ChEMBL + 
Literature 

(IC50) 
Prediction 50 M 0.937 -1.50 0.620 0.537 0.564 0.910 -0.627 

ENT1 
ChEMBL + 
Literature 

(IC50) 
Applicability 50 M 

IN 
MODEL 

0.777 0.515 0.500 0.476 0.519 0.750 

ENT1 
ChEMBL 

(IC50) 
Prediction 

Calculated 

(1.95 M) 
0.111 0.0781 0.131 0.238 0.391 0.661 0.151 

ENT1 
ChEMBL 

(IC50) 
Applicability 

Calculated 

(1.95 M) 
0.330 0.587 0.439 0.444 0.404 0.441 0.666 

ENT1 
ChEMBL 

(IC50) 
Prediction 100 M 0.518 0.106 0.664 0.532 0.710 0.819 0.374 

ENT1 
ChEMBL 

(IC50) 
Applicability 100 M 0.330 0.587 0.439 0.444 0.404 0.441 0.666 

ENT1 
ChEMBL 

(IC50) 
Prediction 50 M 0.456 0.113 0.622 0.566 0.640 0.844 0.305 

ENT1 
ChEMBL 

(IC50) 
Applicability 50 M 0.330 0.587 0.439 0.444 0.404 0.441 0.666 

ENT1 
Miller et al 
(%uptake) 

Prediction 

<50% 
uptake at 

200 M 

1.43 0.508 0.704 0.730 0.622 0.610 0.450 

ENT1 
Miller et al 
(%uptake) 

Applicability 

<50% 
uptake at 

200 M 

0.732 0.746 0.409 0.361 0.381 0.350 0.770 

ENT2 
Miller et al 
(%uptake) 

Prediction 

<50% 
uptake at 

200 M 

1.33 0.484 0.591 0.574 0.438 0.444 0.274 

ENT2 
Miller et al 
(%uptake) 

Applicability 

<50% 
uptake at 

200 M 

0.732 0.746 0.409 0.361 0.381 0.350 0.770 

 

 

 



Supplementary Table 2: MRM transitions for detection of remdesivir. molnupiravir and 

EIDD-1931 by LC-MS/MS. Cladribine served as an internal standard (IS). DP, declustering 

potential; CE, collision energy 

 

 

Compound Q1 (m/z) Q3 (m/z) Time (msec) DP (V) CE (V) 

Remdesivir 603.5 318.0 150 100 30 

Cladribine (IS) 286.0 170.0 150 30 25 

Molnupiravir 330.1 128.1 150 40 50 

Cladribine (IS) 286.0 170.0 150 30 25 

EIDD-1931 260.2 128.2 90 18 16 

Cladribine (IS) 286.0 170.0 90 30 25 
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