Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
OtherMinireview

Mechanisms to repair stalled Topoisomerase II-DNA covalent complexes

Rebecca L. Swan, Ian G. Cowell and Caroline A. Austin
Molecular Pharmacology October 23, 2021, MOLPHARM-MR-2021-000374; DOI: https://doi.org/10.1124/molpharm.121.000374
Rebecca L. Swan
1Biosciences Institute, Newcastle University, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ian G. Cowell
2Institute for Cell and Molecular Biosciences, Newcastle University, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Caroline A. Austin
1Biosciences Institute, Newcastle University, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: caroline.austin@ncl.ac.uk
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

DNA topoisomerases regulate the topological state of DNA, relaxing DNA supercoils and resolving catenanes and knots that result from biological processes such as transcription and replication. DNA topoisomerase II (TOP2) enzymes achieve this by binding DNA and introducing an enzyme-bridged DNA double-strand break (DSB) where each protomer of the dimeric enzyme is covalently attached to the 5' end of the cleaved DNA via an active site tyrosine phosphodiester linkage. The enzyme then passes a second DNA duplex though the DNA break, before religation and release of the enzyme. However, this activity is potentially hazardous to the cell, as failure to complete religation leads to persistent TOP2 protein-DNA covalent complexes which are cytotoxic. Indeed, this property of topoisomerase has been exploited in cancer therapy in the form of topoisomerase poisons which block the religation stage of the reaction cycle, leading to an accumulation of topoisomerase-DNA adducts. A number of parallel cellular processes have been identified that lead to removal of these covalent TOP2-DNA complexes facilitating repair of the resulting protein-free DSB by standard DNA repair pathways. These pathways presumably arose to repair spontaneous stalled or poisoned TOP2-DNA complexes, but understanding their mechanisms also has implications for cancer therapy, particularly resistance to anti-cancer TOP2 poisons and the genotoxic side effects of these drugs. Here we review recent progress in the understanding of the processing to TOP2 DNA covalent complexes., The basic components and mechanisms plus the additional layer of complexity posed by the post-translational modifications that modulate these pathways.

Significance Statement Multiple pathways have been reported for removal and repair of TOP2-DNA covalent complexes to ensure the timely and efficient repair of TOP2-DNA covalent adducts to protect the genome. Post-translational modifications such as ubiquitination and SUMOylation are involved in the regulation of TOP2-DNA complex repair. Small molecule inhibitors of these post translational modifications may help to improve outcomes of TOP2 poison chemotherapy, for example by increasing TOP2 poison cytotoxicity and reducing genotoxicity, but this remains to be determined.

  • DNA damage and repair
  • Proteasome-mediated protein degradation
  • Sumoylation
  • Topoisomerases
  • Ubiquitination
  • Copyright © 2020 American Society for Pharmacology and Experimental Therapeutics
Next
Back to top

In this issue

Molecular Pharmacology: 103 (4)
Molecular Pharmacology
Vol. 103, Issue 4
1 Apr 2023
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mechanisms to repair stalled Topoisomerase II-DNA covalent complexes
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherMinireview

Repair review

Rebecca L. Swan, Ian G. Cowell and Caroline A. Austin
Molecular Pharmacology October 23, 2021, MOLPHARM-MR-2021-000374; DOI: https://doi.org/10.1124/molpharm.121.000374

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherMinireview

Repair review

Rebecca L. Swan, Ian G. Cowell and Caroline A. Austin
Molecular Pharmacology October 23, 2021, MOLPHARM-MR-2021-000374; DOI: https://doi.org/10.1124/molpharm.121.000374
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • AhR modulation in environmentally induced skin conditions
  • Ferroptosis and Breast Cancer
  • LncRNAs Associated With Neuroinflammation
Show more Minireview

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics