












to disruption of mitochondrial homeostasis and subsequent
release of mtDNA to drive innate immune activation by these
agents.
To directly test the hypothesis of whether the eribulin-

mediated release of mtDNA was indeed responsible for the
increase in IFNb expression, we took advantage of the fact
that EtBr depletes mtDNA while preserving mitochondria
themselves (Armand et al., 2004). This method has been used
by others to evaluate mtDNA-mediated activation of the
cGAS-STING pathway (White et al., 2014; Yamazaki et al.,
2020; Hu et al., 2021). We therefore cultured HCC1937 cells
in EtBr for 5 days to generate mtDNA-depleted (rho0)
HCC1937 cells as noted by the depletion of mitochondrial
genes in these cells as compared with the untreated controls
(Fig. 5F). Strikingly, when mitochondria-deficient HCC1937
rho0 cells were treated with eribulin, there was a complete
loss of eribulin-mediated IFNb induction (Fig. 5G) that coin-
cided with the absence of eribulin-induced accumulation of
mtDNA in the cytoplasm (Fig. 5H). Importantly, HCC1937
rho0 cells retained the ability to induce IFNb expression in
response to exogenously added HT-DNA (Supplemental Fig.
6C), indicating that these cells retain a functional cGAS-ST-
ING pathway. Collectively, these studies demonstrate that

cellular mitochondria are critical for mediating the eribulin-
dependent accumulation of cytoplasmic mtDNA, which pro-
motes innate immune activation via the cGAS-STING
pathway to drive expression of IFNb and ISGs.

Discussion
MTAs, including the microtubule stabilizer paclitaxel and

the microtubule destabilizer eribulin, are some of the most
effective agents used in the treatment of metastatic TNBC
(Dumontet and Jordan, 2010). Historically, their clinical suc-
cess has been attributed to their shared ability to suppress
mitosis, leading to the apoptosis of rapidly dividing cancer
cells. However, accumulating evidence in both patients and
preclinical models demonstrates that the anticancer effects of
MTAs cannot solely be explained by their shared antimitotic
effects and that inhibition of interphase microtubule dynam-
ics significantly contributes to their antitumor properties
(Komlodi-Pasztor et al., 2012; Field et al., 2014; Bates and
Eastman, 2017). Moreover, different MTAs can elicit distinct
effects on cellular oncogenic signaling pathways as well as on
mitochondrial homeostasis that may underlie unappreciated
clinical effects between these drugs (Karbowski et al., 2001;

Fig. 4. Expression of interferon-b by eri-
bulin in TNBC cell lines requires the
DNA sensor cGAS. (A) Immunoblot anal-
ysis of cGAS, STING, and b-tubulin
expression in THP-1 and TNBC cells. (B)
IFNb mRNA in TNBC cells transfected
with 1 mg of HT-DNA for 24 hours or
mock-transfected. (C and D) IFNb mRNA
in TNBC cells treated with 100 nM eribu-
lin (ERB) for 2 hours (C) or 6 hours (D)
as compared with DMSO controls. Signifi-
cance was determined by two-way
ANOVA (cell line * drug) with Tukey’s
post hoc test. (E) IFIT1 mRNA in CAL-51
cells transfected with RFP-cGAS or mock-
transfected and treated with DMSO
(Veh) or 100 nM ERB for 24 hours. Sig-
nificance was determined by two-way
ANOVA (cGAS * drug) with Tukey’s post
hoc test. (F) HCC1937 IFNb intracellular
protein in live cells treated with DMSO
or 100 nM eribulin for 6 hours. Signifi-
cance determined by an unpaired two-
tailed t test. (G) Human IFIT1 mRNA in
HCC1937 cells treated with 100 nM eri-
bulin for 2, 6, or 24 hours compared with
DMSO. Significance determined by vehi-
cle-compared one-way ANOVA with Dun-
nett’s post hoc test. Data are shown as
individual points from two independent
biologic replicates with error bars denot-
ing range. *P < 0.05, **P < 0.01, ***P <
0.001, ****P < 0.0001. Veh, vehicle.
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Dybdal-Hargreaves et al., 2017; Kaul et al., 2019a). Herein,
we show that the microtubule destabilizer eribulin induces
the cGAS-STING pathway–mediated expression of IFNb in
innate immune cells as well as in TNBC cells within 2–6
hours by promoting the accumulation of cytoplasmic mtDNA.
One of our most surprising and important findings is that

eribulin is distinct from paclitaxel in its ability to promote
cytoplasmic accumulation of mtDNA leading to cGAS-
STING–dependent interferon and downstream ISG induc-
tion. Our results demonstrate that the activation of this
immune pathway occurs within 2–6 hours of drug addition
and is not dependent on mitotic arrest or the initiation of
apoptosis. This is different from studies demonstrating that
both microtubule stabilizers and destabilizers can promote
activation of the cGAS-STING pathway, specifically during
extended periods of mitotic arrest, when genomic DNA is
released into the cytoplasm (Mackenzie et al., 2017; Zierhut
et al., 2019). Importantly, this previously reported genomic
DNA release was dependent on mitosis and not observed in
noncycling cells. Our current finding that eribulin rapidly

and specifically activates cGAS-STING through mtDNA
release in both TNBC and immune cells including those that
are terminally differentiated is significant particularly in
solid tumors that have a much lower mitotic index than can-
cer cells in culture (Komlodi-Pasztor et al., 2011).
These findings are timely, as they may contribute to a

mechanistic understanding behind the efficacy of combina-
tions of molecularly distinct classes of MTAs, including eribu-
lin, with immune checkpoint inhibition in patients with
TNBC (Schmid et al., 2020; Tolaney et al., 2021). The cGAS-
STING pathway has been shown to be indispensable for
immune checkpoint inhibitors to exert their antitumor effects
(Wang et al., 2017), and agents that activate the cGAS-
STING pathway have been shown to enhance the efficacy of
immune checkpoint therapy in metastatic breast cancer mod-
els primarily by priming the immune system to acquire an
antitumor phenotype (Chandra et al., 2014; Cheng et al.,
2018). These findings have prompted the discovery and devel-
opment of pharmacological STING agonists; however, our
data demonstrate that eribulin and likely a subset of

Fig. 5. Eribulin promotes cytoplasmic accumulation of mtDNA. (A) qRT-PCR analysis of relative abundance of genomic DNA (gDNA) (ACTb,
GAPDH, HPRT, PGK, RPS18, and TBP) and mitochondrial DNA (mtDNA) (ATP6, ATP8, COX-1, ND1, ND4, and ND6) sequences present in the
cytoplasm of HCC1937 cells treated with 100 nM eribulin (ERB) for 6 hours. Data are shown as the ratio of gDNA or mtDNA in the cytoplasmic
fraction as compared with the organelle-enriched fraction and normalized to the vehicle control as fold change. Significance was determined by one-
way ANOVA with Dunnett’s post hoc test. (B and C) COX-1 mtDNA present in the cytoplasm of HCC1937 (B) or BMDM (C) cells treated with 100
nM eribulin or paclitaxel (PTX) for 6 hours as compared with vehicle. Significance determined by vehicle-compared one-way ANOVA with Dunnett’s
post hoc test compared with vehicle. (D) IFNb mRNA in THP-1 cells treated with 10, 100, or 1000 nM ERB, vinorelbine (VNR), ixabepilone (IXA),
PTX, or docetaxel (DTX) for 24 hours. Significance determined by vehicle-compared two-way ANOVA (drug * concentration) with Tukey’s post hoc
test compared with vehicle. (E) IFIT1 mRNA in THP-1 cells treated with 10, 100, or 1000 nM ERB, VNR, or PTX for 24 hours. Significance deter-
mined by vehicle-compared two-way ANOVA (drug * concentration) with Tukey’s post hoc test compared with vehicle. (F) COX-1 mRNA in control
and ethidium bromide cultured (Rho0) HCC1937 cells treated with 100 nM eribulin for 2 or 6 hours as compared with DMSO. Significance was
determined by two-way ANOVA (Rho status * drug) with Tukey’s post hoc test. (G) IFNb mRNA in control and Rho0 HCC1937 cells treated with
100 nM eribulin for 2 or 6 hours as compared with DMSO. Significance was determined by two-way ANOVA (Rho status * drug) with Tukey’s post
hoc test. (H) Cytoplasmic COX-1 DNA present in control and Rho0 HCC1937 cells treated with 100 nM eribulin or paclitaxel for 6 hours as com-
pared with DMSO. Significance was determined by two-way ANOVA (Rho status * drug) with Tukey’s post hoc test. Data are shown as individual
points from two independent biologic replicates with error bars denoting range. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Veh, vehicle;
ctrl, control.
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currently approved microtubule destabilizers that innately
possess this activity are already in clinical use. Consistent
with our findings that the microtubule destabilizer vinorel-
bine promotes STING activation, preclinical studies have
shown an increased response to immune checkpoint inhibi-
tors when combined with vinorelbine (Orecchioni et al.,
2018). We speculate that the mitotic-independent activation
of the cGAS-STING pathway by eribulin and other microtu-
bule destabilizers could provide an advantage over stabilizers
in activating this antitumor-associated immune signaling
pathway.
Although our studies demonstrate that the interphase effects

of eribulin disrupt mitochondrial localization and promote the
release of mtDNA into the cytoplasm and that mtDNA is
required for eribulin-mediated activation of the cGAS-STING
pathway, themechanism bywhich eribulin promotes thesemito-
chondrial effects is implicated from previous studies. The cyto-
plasmic release of mtDNA under cellular stress can be mediated
by the formation of macropores in the mitochondrial outer mem-
brane either through oligomerization of theBcl-2–associated pro-
teins Bax and Bak (Galluzzi and Vanpouille-Box, 2018) or the
formation of VDAC oligomers (Kim et al., 2019). Previous studies
have demonstrated that increases in cytoplasmic free tubulin
heterodimers, similar to those we observe within 2 hours of eri-
bulin treatment (Figs. 1A and 2A), can directly interact with
VDAC channels and disrupt mitochondrial membrane potential
(Carre et al., 2002; Maldonado et al., 2010; Rovini, 2019). Addi-
tionally, other microtubule destabilizers, including the vinca
alkaloids and combretastatin A-4, induce the expression of
NOXA, which promotes the release and activation of Bax and
Bak to form mitochondrial pores in noncycling cells within the
same timeframe in which we observe an increase of cytoplasmic
mtDNA with eribulin (Bates et al., 2013). Therefore, there is a
strong precedent and rationale for how microtubule destabiliza-
tion can altermitochondrial permeability throughmultiple path-
ways to lead to the innate immune signaling observed in the
current study. A rigorous determination of the relative impact of
these mechanisms on the release of mtDNA by eribulin will
require further investigation.
Together, this work sets the stage for investigation of other

innate immune pathways that are specifically modulated by
MTAs downstream of their effects on microtubule dynamics
and structure. It also specifically prompts interrogation of
the adaptive immunologic events downstream of the activa-
tion of these innate immune sensing pathways, including
whether activation of the cGAS-STING pathway within the
tumor microenvironment can serve as a predictive biomarker
of response to eribulin, particularly in combination with
immunotherapy in TNBC.
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