




first induced by high-fat feeding for 2 months prior to the
study. Exendin-4-C16 was previously shown to be detectable
in plasma 72 hours after dosing (Lucey et al., 2020). There-
fore, the effect of a single administration of each ligand, at
two separate doses, was assessed. Both doses of exendin-4-
C16 led to greater suppression of food intake and weight loss
throughout the dosing period (Fig. 5, D and E). Moreover,
both doses of the acylated ligand exerted a larger antihyper-
glycemic effect in an intraperitoneal glucose tolerance test
performed 72 hours after dosing (Fig. 5F).

Discussion
This study demonstrates how C-terminal acylation of exen-

din-4 affects several GLP-1R pharmacological properties that
are relevant to its therapeutic effect. Although exendin-4-C16
showed minimal reduction in cAMP signaling potency,
marked differences were observed for recruitment of key
intracellular effectors and trafficking responses, which led to
increased insulin secretion with prolonged incubations. We
also evaluated the effect of peptide acylation on binding to
membranes and albumin to more comprehensively describe
the differences between these ligands. Overall, our study
highlights the breadth of pharmacological parameters than
can be affected by peptide acylation.
This work was prompted by our earlier observation that C-

terminal acylation of biased GLP-1RAs based on exendin-4
results in reduced recruitment efficacy for b-arrestin and
mini-G protein (Lucey et al., 2020). The present study con-
firms this observation, with a 60% reduction in maximum
response recorded for b-arrestin-2 recruitment by nanoBiT
complementation with exendin-4-C16. Although mini-Gs

recruitment was also reduced, the impact on b-arrestin-2
recruitment was greater, with biased agonism confirmed by
the operational model approach and on the basis of efficacy
differences (Onaran et al., 2017). We note that this does not
indicate that the ligands show opposing preference for G pro-
tein– versus b-arrestin–favoring GLP-1R conformations; the
observed bias more likely results from the fact that b-arrestin
responses appear to be more susceptible to reductions in
GLP-1R efficacy than do G protein responses. Indeed, our
data add to the growing body of evidence that G protein–fa-
voring biased GLP-1RAs typically show reduced efficacy for
recruitment of both G proteins and b-arrestins (Fang et al.,
2020b; Lucey et al., 2020; Pickford et al., 2020). However,
using a novel Nb37-based BRET approach to monitor activation
of endogenous G proteins close to GLP-1R, we demonstrate here
that exendin-4-C16 shows increases in Gas activation in spite of
its lower mini-Gs recruitment efficacy. This could reflect an
inherent difference in ability of exendin-4-C16 to activate Gas in
spite of reduced recruitment. However, we suspect the real rea-
son is that the activation assay is more susceptible to normal
regulatory processes, such as steric hindrance by b-arrestin
recruitment, which fail to displace mini-G responses due to the
highly stable nature of the GPCR-mini-G complexes (Carpenter
and Tate, 2016). Although the dynamic range of this assay was
low in our hands, making it challenging to apply to higher
throughput screening efforts or to concentration responses, it
could be adapted by the use of alternative fluorophores with
greater signal separation from the nanoluciferase emission peak
(Dale et al., 2019) or using complementation approaches (Inoue
et al., 2019). Other approaches to monitor G protein activation

have typically required overexpression of tagged G protein subu-
nits (Masuho et al., 2015; Inoue et al., 2019; Olsen et al., 2020;
Zhao et al., 2020), which may not totally replicate the physiologic
setting, although corroboration using these approaches would be
useful for validation.
In line with other studies showing that lower efficacy

biased GLP-1RAs tend to induce slower GLP-1R endocytosis
(Jones et al., 2018; Fremaux et al., 2019; Lucey et al., 2020;
Willard et al., 2020), we observed that GLP-1R internaliza-
tion was reduced with exendin-4-C16 compared with exen-
din-4. The automated microscopy approach we used to
demonstrate this has certain advantages over lower through-
put methods by allowing responses to a wide range of ligands
or, in this case, ligand concentrations to be monitored in par-
allel across several fields of view, characterizing ligand
effects in more detail and with greater statistical robustness.
However, this method is unable to discriminate between
GLP-1R clustering at the plasma membrane versus bona fide
endocytosis events, although these are intrinsically linked,
with the former occurring rapidly after ligand stimulation as
a precursor to uptake into clathrin-coated vesicles (Buena-
ventura et al., 2019). The system could be adapted for use
with alternative fluorescence approaches to monitor internal-
ization, e.g., using pH-sensitive SNAP-labeling fluorophores
(Martineau et al., 2017).
We also applied a series of complementary proximity-based

techniques based on both BRET and FRET to monitor GLP-
1R redistribution between the plasma membrane and differ-
ent endosomal compartments. Monitoring GLP-1R disap-
pearance from the plasma membrane by DERET has been
widely applied (Roed et al., 2014; Jones et al., 2018), and the
use of the cleavable BG-Lumi4-Tb to monitor GLP-1R recy-
cling in combination with a fluorescent antagonist ligand was
recently described by our group (Pickford et al., 2020). We
extended this approach here to detect GLP-1R translocation
to late endosomes and lysosomes marked by the lysomotropic
dye LysoTracker, facilitated by the spectral overlap of one of
the Tb emission peaks with the excitation spectrum of Lyso-
Tracker DND99. In principle, a similar approach could be tri-
aled with other fluorescent markers that accumulate in
different subcellular compartments. Using a nanoluciferase
tag at the GLP-1R C terminus, we were also able to obtain
BRET measurements of GLP-1R redistribution to early, late,
and recycling endosomes that corroborate the TR-FRET
responses. This approach has been used recently to study the
trafficking profiles of GLP-1R monoagonists and dual GLP-1R/
GIPR coagonists (Fletcher et al., 2018; Novikoff et al., 2021),
albeit using Renilla luciferase rather than the nanoluciferase
we used in our study. The rank order of ligand-induced
changes was consistent for “matched” TR-FRET and BRET
approaches, with exendin-4-C16 showing reduced GLP-1R
internalization and lysosomal accumulation but faster recy-
cling. In our hands. the TR-FRET approach resulted in clearer
discrimination between ligand responses, which could reflect
cell model differences, influence of the C-terminal NLuc tag
for BRET, or assay/instrument sensitivity.
Importantly, we also observed differences in mini-Gs

recruitment to plasma membrane versus early endosomes
using the nanoBRET approach, providing some insight into
compartmentalization of GLP1-R signaling. Here, plasma
membrane mini-Gs recruitment was somewhat reduced for
exendin-4-C16 compared with exendin-4, which is compatible
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with results from our nanoBiT complementation assay dem-
onstrating reduced global mini-Gs recruitment efficacy for
this ligand. However, recruitment of mini-Gs to Rab5-positive
early endosomes was reduced to an even greater extent,
which can be at least partly explained by the reduced rate of
internalization with this ligand, although differences in abil-
ity to maintain GLP-1R activation once internalized could
also contribute. Indeed, the GLP-1R-Rab5 BRET signal was
only marginally reduced with exendin-4-C16 versus exendin-
4, whereas the mini-Gs-Rab5 BRET response showed larger
differences between ligands. However, differences in lucifer-
ase/fluorophore configuration between assays, as well as
unknown effects of mini-Gs overexpression on GLP-1R phar-
macology, mean that further work will be needed to fully
explain this observation. GLP-1R has been reported to
generate signals from the endosomal compartment
(Kuna et al., 2013; Roed et al., 2015; Girada et al., 2017;
Fletcher et al., 2018), in line with many other GPCRs
(Vilardaga et al., 2014), and this phenomenon is fre-
quently claimed to be a mechanism for sustained cAMP
signaling. However, although our results corroborate
the existence of GLP-1R–associated endosomal signal-
ing, they also suggest that sustained GLP-1R signaling,
as indicated by cumulative insulin secretion over phar-
macologically relevant timescales, is actually greater
with the ligand (exendin-4-C16) with a reduced ten-
dency to recruit mini-Gs to Rab5-positive endosomes.
This raises questions about the relative therapeutic
importance of maintaining an adequate pool of surface
GLP-1Rs during prolonged stimulations versus aiming
for maximal endosomal receptor activation.
The structural basis for the modified GLP-1R activation

profile with exendin-4-C16 is not clear. The C terminus of
exendin-4, although not required for GLP-1R activation (Lee
et al., 2018), plays an important role in GLP-1R binding
(Doyle et al., 2003). Installation of a large acyl chain at the
peptide C terminus could potentially interfere with ligand
binding. We observed a modest reduction in GLP-1R binding
affinity, in keeping with this possibility. However, receptor
activation efficacy was also reduced. Interestingly, the C ter-
minus of exendin-4 may be required to facilitate formation of
high-order GLP-1R oligomers through interaction with
neighboring GLP-1R protomers in trans (Koole et al.,
2017). GLP-1R oligomerization is reported to be required
for full signaling responses (Harikumar et al., 2012). A
further possibility is that the acyl chain could interact
with the plasma membrane in a specific manner that
interferes with GLP-1R activation. We found here that a
fluorescently labeled exendin-4-C16 does indeed form
interactions with model membranes, whereas the equiva-
lently labeled nonacylated exendin-4 does not. Corre-
sponding measurements from living cells also suggested
greater membrane interactions with the acylated ligand
but did not support the possibility of localized activation
of GLP-1R subpopulations situated in particular plasma
membrane nanodomains.
As differential ability of ligands to stabilize active GLP-1R

conformations is a further potential explanation for the
ligand signaling efficacy differences, we devised a strategy to
monitor movements between the receptor ECD and the
plasma membrane, finding efficacy reductions with exendin-
4-C16 that matched the reduced intracellular signaling

responses also observed with this ligand. This approach may
be more widely useful as a conformational sensor for other
GPCRs, although it lacks the ability to detect changes at the
receptor intracellular face that is needed to provide insights
into conformational changes required for G protein
interactions.
There are a number of limitations with our study. Firstly,

we investigated the effects of a single type of C16 diacid acyl
chain, and our results are not necessarily extrapolable to
GLP-1R agonists with different acyl chain lengths or acyl
monoacids. Secondly, the majority of studies were performed
in heterologous cell lines with overexpression of tagged GLP-
1R constructs, which could influence the pharmacology.
Although numerous studies have demonstrated that biased
agonism and trafficking assessments in heterologous systems
reliably predict insulin secretory and other key physiologic
effects of biased GLP-1RAs in vivo, the field would benefit
from further efforts to study behaviors of endogenous GLP-1R
in b cells and cell types with native GLP-1R expression.
In summary, beyond the expected effects on binding to albu-

min, C-terminal acylation of exendin-4 led to changes in multi-
ple pharmacological parameters relevant to downstream GLP-
1R responses. These observations are more broadly relevant to
drug discovery at peptide GPCRs for which ligand acylation is
a valid approach to improve pharmacokinetics.
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Supplementary Figure 1 
 

 
 
Supplementary Figure 1. Pharmacological responses to exendin-4 and exendin-4-C16. 
(A) β-arrestin-1 and β-arrestin-2 responses measured in PathHunter GLP-1R cells, n=5, with 
bias quantification showing selectivity for β-arrestin-2 versus β-arrestin-1 with comparison by 
paired t-test. (B) Measurement of β-arrestin-2 activation in HEK293-SNAP-GLP-1R cells 
transiently transfected with NLuc-4myc-βarr2-CYOFP1 and stimulated with 100 nM agonist 
or vehicle, n=6, with AUCs compared by paired t-test. Data are shown as mean ± SEM with 
individual replicates shown for AUC graph. * p<0.05 by statistical test indicated. 
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Supplementary Figure 2 
 

 
 
Supplementary Figure 2. Trafficking responses to exendin-4, exendin-4-C16, and 
functional characterization of TMR-conjugates. (A) Alternative quantification of 
endosomal puncta formation from Figure 2B, with concentration-dependent peak number of 
spots, or AUC across the entire 30-min stimulation period indicated with 3-parameter fit 
shown. (B) TR-FRET binding data for exendin-4-TMR and exendin-4-TMR-C16 in HEK293-
SNAP-GLP-1R cells, n=5, with log Kd compared by paired t-test. (C) cAMP data for TMR-
modified or not exendin-4 / exendin-4-C16, n=5, with 3-parameter fits shown. LogEC50 
values are compared by 2-way randomised block ANOVA with Sidak’s test. Data are shown 
as mean ± SEM with individual replicates shown where possible. * p<0.05 by statistical test 
indicated 
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Supplementary Figure 3 
 

 
 
Supplementary Figure 3. GLP-1R trafficking responses by DERET. (A) GLP-1R 
endocytosis with exendin-4 and exendin-4-C16 measured by DERET in HEK293-SNAP-
GLP-1R cells, n=5. Concentration response is quantified from AUC with 3-parameter fit 
shown. Data are shown as mean ± SEM. 
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Supplementary Figure 4 
 

 
 
Supplementary Figure 4. Exendin-4-FITC and exendin-4-FITC-C16 functional 
characterisation. (A) TR-FRET binding data for exendin-4-FITC and exendin-4-FITC-C16 in 
HEK293-SNAP-GLP-1R cells, n=5, with log Kd compared by paired t-test. (B) cAMP data for 
FITC-modified or not exendin-4 / exendin-4-C16, n=5, with 3-parameter fits shown. LogEC50 
values are compared by 2-way randomised block ANOVA with Sidak’s test. (C) FRET 
responses for T-REx-SNAP-GLP-1R cells expressing AKAP79-CUTie stimulated with each 
ligand, n=6. The Shaded area indicates the time-points from which the average response wa 
calculated in Figure 4D.  Data are shown as mean ± SEM with individual replicates where 
possible. * p<0.05 by statistical test indicated. 
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Supplementary Figure 5. 
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Supplementary Figure 5. BRET analytical approach and raw BRET ratios. (A) β-
arrestin-2 activation assay (refers to Figure 1F). The raw BRET ratios, baseline-normalised, 
and baseline-normalised and vehicle-subtracted traces are shown to indicate how the 
specific ligand-induced BRET signal presented in Figure 1F and corresponding AUC values 
are derived. The BRET signal drift is substantial but agonist-induced BRET ratios are 
consistently higher at each time-point. (B) Nb37 G protein activation assay (refers to Figure 
1E). Due to the low dynamic range of this assay, individual experimental repeats have been 
presented as baseline-normalised BRET ratios. It can be seen that, in spite of significant drift 
in all traces over time, agonist-induced BRET values are consistently subtly increased 
compared to vehicle throughout each experiment. Moreover, on each occasion, exendin-4-
C16 responses are slightly greater than those of exendin-4. (C), (D), (E) and (F) GLP-1R-
Nluc redistribution assays (refers to Figure 3F-I). (G) and (H) Mini-Gs redistribution assay 
(refers to Figure 3K). Mean ± SEM is shown. 
 


