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ABSTRACT
The evolving view of gut microbiota has shifted toward describ-
ing the colonic flora as a dynamic organ in continuous interaction
with systemic physiologic processes. Alterations of the normal
gut bacterial profile, known as dysbiosis, has been linked to a wide
array of pathologies. Of particular interest is the cardiovascular–
metabolic disease continuum originating from positive energy
intake and high-fat diets. Accumulating evidence suggests a role
for sex hormones in modulating the gut microbiome community.
Such a role provides an additional layer of modulation of the early
inflammatory changes culminating in negative metabolic and
cardiovascular outcomes. In this review, we will shed the light on
the role of sex hormones in cardiovascular dysfunction mediated
by high-fat diet-induced dysbiosis, together with the possible
involvement of insulin resistance and adipose tissue inflammation.

Insights into novel therapeutic interventions will be discussed as
well.

SIGNIFICANCE STATEMENT
Increasing evidence implicates a role for dysbiosis in the cardiovas-
cular complications of metabolic dysfunction. This minireview sum-
marizes the available data on the sex-based differences in gut
microbiota alterations associated with dietary patterns leading to
metabolic impairment. A role for a differential impact of adipose tis-
sue inflammation across sexes inmediating the cardiovascular det-
rimental phenotype following diet-induced dysbiosis is proposed.
Better understanding of this pathway will help introduce early
approaches to mitigate cardiovascular deterioration in metabolic
disease.

Introduction
The gut microbiota (GM) is a complex ecosystem that can

be described as a dynamic organ with an active role in
human health and disease (Putignani et al., 2014). The
microbial community has high plasticity and is sensitive to
several stimuli including environmental, hormonal, dietary,
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and stress-related factors (Putignani et al., 2014). Neverthe-
less, diet remains one of the most vigorous modulators of GM
(David et al., 2014) with Western-type calorie-dense diets
driving an imbalance of microorganisms in the gut or dys-
biosis (Sen et al., 2017). This is particularly relevant to the
steady rise in the prevalence of metabolic disease like dia-
betes, obesity, and their complications, driven by increased
caloric intake after the global shift to the Western diets,
rich in saturated fat and refined sugars (Lutsey et al.,
2008; Misra et al., 2010). As such, there has been an
increasing interest in studying dysbiosis in these maladies
together with the impact of its modification as a therapeu-
tic option.
Significantly, most of the health burden associated with

metabolic dysfunction is due to the high risk of cardiovascular
mortality and morbidity due to ischemic heart disease, ische-
mic stroke, cardiac metabolic dysfunction, and heart failure
(Ash-Bernal and Peterson, 2006; von Bibra et al., 2016). Of
note, cardiovascular risk evoked by metabolic impairment has
long been associated with a state of chronic low-grade inflam-
mation (de Rooij et al., 2009). Indeed, under circumstances
leading to dysbiosis, GM can contribute to this inflammatory
state. Normally, the host health/gut bacteria interaction occurs
through exposure to either bacterial components known as
pathogen-associated molecular patterns, like flagella and cell
wall constituents like lipopolysaccharide (LPS) (Tilg et al.,
2019) or to the metabolites produced by bacterial digestion
and processing of ingested food, which were shown to have sev-
eral effects including modulation of the function of immune
and autonomic nervous system as will be discussed below.
Therefore, dysbiosis outcomes depend on the changes in bacte-
rial phyla residing in the gut.
Interestingly, considerable sex-dependent differences were

reported in inflammatory changes and cardiovascular risk
associated with metabolic dysfunction. Recent literature
shows that metabolic impairment in humans leads to differ-
ent inflammatory profiles across sexes with increased produc-
tion of proinflammatory cytokines in males (ter Horst et al.,
2020). Indeed, premenopausal females are less prone to
adverse cardiovascular events (Mosca et al., 2011), and vary-
ing cardiovascular profiles secondary to metabolic deteriora-
tion are observed in either sex (Gerdts and Regitz-Zagrosek,
2019). Although sex-dependent differences in metabolic-
derived cardiovascular diseases (CVDs) are typically attrib-
uted to estrogen-driven alteration in insulin sensitivity, adi-
posity, adipocyte size and function, as well as adipose tissue
(AT) susceptibility to inflammation (Ribas et al., 2010; Prad-
han, 2014; Zore et al., 2018), sex-dependent differences in
GM together with its vulnerability to dysbiosis add a new
layer of complexity to the paradigm. GM appears to play
an important role in mediating the differential patterns
observed in diet-induced metabolic and cardiovascular dys-
function across sexes. Although the exact mechanism has yet
to be comprehensively and systematically investigated, we
attempt here to shed the light on the potential mechanisms
through which dysbiosis mediates cardiovascular dysfunction
in early metabolic impairment in a sex-dependent manner.
We explore the sex differences in high-fat diet- (HFD)
induced dysbiosis and the consequent AT inflammatory
changes and cardiovascular dysfunction in the context of
early metabolic deterioration. As well, we summarize some of
the available evidence regarding possible therapeutic

interventions to address these disorders via targeting the gut
microbiome homeostasis.

Sex-Dependent Differences in Gut Microbiota
in the Healthy State

The assumption of dysbiosis in disease states necessitates
a fundamental knowledge of the composition and function of
GM in healthy individuals. Nevertheless, a unified healthy
GM profile has not been defined at any profound taxonomic
resolution owing to several endogenous and exogenous fac-
tors. These include interindividual host genetic and environ-
mental differences (Hooper et al., 2001; Abdul-Aziz et al.,
2016; Rothschild et al., 2018), disparate GM growth rates,
strain-level diversities, and variants within microbial genes
(Huttenhower et al., 2012; Korem et al., 2015; Zeevi et al.,
2019). However, high taxonomic diversity, along with high
microbial gene richness and stable microbiome functions rep-
resent characteristics of a healthy GM (Huttenhower et al.,
2012).
The major bacterial phyla inhabiting the human gut are

Fermicutes, Bacteroidetes, Proteobacteria, Verrucomicrobia,
Actinobacteria, and Fusobacteria, with Firmicutes and Bac-
teroidetes accounting for almost 70% of the total microbiota
(Zoetendal et al., 2008; Mariat et al., 2009) and their
Firmicutes/Bacteroidetes (F/B) ratio changing under situa-
tions of metabolic impairment (Turnbaugh et al., 2006). The
homeostatic state in which the GM is healthy and balanced
is referred to as a state of eubiosis (Iebba et al., 2016). Signifi-
cantly, several studies highlighted sex-dependent variations
of the GM in health and disease (Org et al., 2016; Han et al.,
2017; Razavi et al., 2019). It was shown that Drosophila
melanogaster strains exhibit a differential abundance of
microbes across sexes irrespective of nutritional conditions
(Han et al., 2017). Interestingly, similar results were also
obtained in different strains of mice where the abundance of
several taxa exhibited significant sex-dependent differences
(Org et al., 2016). Furthermore, such differences were also
evident in mice fed either normal chow or HFD, suggesting
sex-by-diet interactions (Org et al., 2016).
Indeed, the impact of gonadectomy and sex hormone

replacement on GM is far from settled. This is of particular
interest in light of the reduced susceptibility of premeno-
pausal women to metabolic and cardiometabolic diseases
(Santos-Marcos et al., 2019) where numerous lines of evi-
dence suggested a role for female sex hormones in enhancing
the diversity of the GM (Song et al., 2020). A cross-sectional
study revealed that although sex-dependent differences in
GM were observed before puberty, they tended to increase
after puberty with significant differences in b-diversity (inter-
individual dissimilarity) but not in a-diversity (intraindivid-
ual bacterial diversity) (Yuan et al., 2020). Furthermore,
studies have shown a stronger impact of female gonadal hor-
mones on GM. A study in rats showed that although the sex-
dependent differences in GM community persisted after
gonadectomy, the detrimental impact was more pronounced
in female rats, especially when animals were overfed (San-
tos-Marcos et al., 2020). This is indeed in line with observa-
tions in humans demonstrating a shift in the GM profile in
postmenopausal women compared with age matched men
(Santos-Marcos et al., 2018). Along the same lines, the strong
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associations observed between sex and a-diversity in young
adults, although persisted after adjusting for cardiometabolic
parameters, tended to diminish after 40 years of age (de la
Cuesta-Zuluaga et al., 2019), consistent with an age-related
decline in the level of sex hormones. Importantly, the interac-
tion between GM and female sex hormones appears to be bidi-
rectional, whereby a study on rats showed that several GM-
derived microRNAs were reported to modulate steroid biosyn-
thesis and estrogen signaling (Santos-Marcos et al., 2020).
Although less clear in human studies, accumulating evi-

dence from experiments on mice suggests that the differen-
tial diversity in GM can drive sexually dimorphic immune
responses (Elderman et al., 2018; Felix et al., 2018). It was
even suggested that sexual dimorphism in susceptibility to
certain autoimmune disorders, like Type 1 diabetes mellitus,
was mediated by GM in rodent models, and the alteration of
GM at an early age may protect against genetic predisposi-
tion to autoimmune diseases (Markle et al., 2013; Yurkovet-
skiy et al., 2013; Candon et al., 2015). This sex-dependent
dysbiosis in disease prognosis was suggested to mediate man-
ganese-induced neurotoxicity (Chi et al., 2017). As these
factors augment the complexity of the host environment-
microbiota interactions, it becomes plausible that diet-
induced GM alteration leading to metabolic impairment will
trigger distinct inflammatory responses in either sex, culmi-
nating in disparate cardiovascular consequences.

Sex-Dependent Gut Microbiome Alterations in
Early Metabolic Impairment

Early metabolic impairment has long been discussed in the
literature, yet there has been no consensus on the exact defi-
nition and the diagnostic criteria. This is despite the fact that
a significant proportion of the global population exhibits sub-
optimal metabolic health, primarily due to excessive caloric
consumption and sedentary lifestyles resulting in the
increased prevalence of metabolic diseases such as insulin
resistance, obesity, and diabetes (Chatelier et al., 2013; Zheng
et al., 2018; Jaacks et al., 2019; Frost et al., 2021). This is mir-
rored by an increased prevalence of metabolic dysfunction-
associated cardiovascular diseases (Lakka et al., 2002).
Indeed, recent research identified early stages of metabolic
deterioration such as prediabetes or metabolically unhealthy
normal weight as risk factors of cardiovascular disease
(Stefan, 2020; Alderman, 2021). Despite the various patho-
logic mechanisms culminating in the emergence of these dis-
orders, it seems that they are correlated with GM alterations
referred to as dysbiosis (Qin et al., 2012; Qin et al., 2014; Allin
et al., 2018). Next-generation sequencing of the gut micro-
biome had a major role in unfolding the involvement of GM in
regulating the host metabolism. Metabolic-related dysbiosis is
usually exemplified by altering the abundance of Bacteroides,
Prevotella, Desulfovibrio, Lactobacillus, and Oxalobacter gen-
era in the gut (Tyakht et al., 2013; Clemente et al., 2015;
Smits et al., 2017). Nevertheless, the precise dynamics of GM
involvement in metabolic diseases is not fully explored yet.
Indeed, whether the disease-associated aberrant microbiota
underpins disease causation or represents a secondary phe-
nomenon after disease onset and progression has been widely
debated (B€ackhed et al., 2004; Pedersen et al., 2016; Qin
et al., 2010). Fig. 1 outlines the proposed framework linking

dysbiosis in metabolic dysfunction with the pathogenesis of
cardiovascular complications together with the interplay with
sex-dependent factors as described below.
Sex-Dependent Differences in Diet-Induced Dysbio-

sis. As diet remains the cornerstone for GM modulation in
humans and animal models (David et al., 2014; Carmody
et al., 2015), dysbiosis has been the focus of research on diet
induced pathologies. HFD was consistently reported to pro-
voke dysbiosis by altering the scale of the major gut phyla,
increasing F/B ratio as well as an increase in Proteobacteria,
which were ushered with impaired metabolic and cardiovas-
cular function (Moreira et al., 2012; Murphy et al., 2015).
Bacteroidetes is considered the most prevalent gram-negative
bacteria in the gut and is essentially considered beneficial
due to their capacity to modulate caloric absorption through
polysaccharide metabolism (Wexler, 2007). On the other
hand, Firmicutes are largely gram positive and are capable of
producing various short-chain fatty acids (SCFAs) (Den Bes-
ten et al., 2013). It is generally accepted that a higher F/B
ratio is usually observed in overweight and obese subjects
(Ley et al., 2006; Million et al., 2012; Kasai et al., 2015), and
a reduction in the F/B ratio has been associated with weight
loss (Ley et al., 2006; Turnbaugh et al., 2006). However, the
opposite was documented as well where HFD and diet-
induced obesity were associated with decreased F/B ratio in
human and animal models in both sexes (Collado et al., 2008;
Schwiertz et al., 2010).
Indeed, dysbiosis severity in different situations of meta-

bolic impairment appeared to be sex dependent (Org et al.,
2016). Premenopausal women were shown to have a higher
F/B ratio than postmenopausal women and men (Santos-
Marcos et al., 2018). Accumulating evidence suggested that
women harbor a higher F/B ratio in comparison with men,
even after adjusting for body mass index (BMI) (Mueller
et al., 2006; Dominianni et al., 2015). In fact, F/B ratio was
found to be highly influenced by BMI and has been used as
an indicator of gut dysbiosis with a higher F/B ratio indicat-
ing a more pronounced dysbiotic microbiome (Kasai et al.,
2015). Another human study showed that among subjects
with BMI greater than 33, men exhibited a significantly
lower F/B ratio in comparison with women, whereas the
opposite was observed in subjects with a BMI lower than 33
as well as in postmenopausal women (Haro et al., 2016). Sex-
differential dysbiosis was also observed among lean men and
women, as postmenopausal women had a similar GM signa-
ture as men, whereas obesity abolished these differences.
The same study emphasized the tight correlation between
sex hormones and GM diversity. Premenopausal women had
higher Bifidobacterium and lower Bacteroides than men and
postmenopausal women, as GM community could predict tes-
tosterone level in humans and recipient mice of human fecal
microbiome (Mayneris-Perxachs et al., 2020).
In mechanistic terms, estrogen receptor-b (ERb) has been

proposed to be a modulator of sex-dependent dysbiosis. For
instance, ERb knockout female mice on isoflavone and fiber-
rich feeding achieved a state of eubiosis with an increase in
Bacteroidetes and a reduction in Firmicutes and Proteobacte-
ria. However, when these mice were switched to an isocaloric
low-fiber and simple-sugar rich diet, the knockout mice had
more pronounced dysbiosis and reduced Bacteroidetes in
favor of Proteobacteria compared with their wild-type coun-
terparts (Menon et al., 2013), suggesting a protective effect of
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estrogen in diet-induced dysbiosis. Similarly, genetically
obese ob/ob mice show an elevation of F/B ratio (Turnbaugh
et al., 2006). Interestingly, hormonal treatment with 17b-
estradiol (E2) in female mice was found to correct HFD-
related dysbiosis in ob/ob and wild-type mice by increasing
the heterogeneity of GM distribution and reducing the F/B
ratio compared with the vehicle group (Acharya et al., 2019).
Moreover, androgenization of young and adult ovariecto-
mized female Wistar rats induced dysbiosis regardless of
dietary intervention. It reduced GM diversity, elevated F/B
ratio, and impaired overall metabolic function (Moreno-
Indias et al., 2016).
Although human studies link dysbiosis to obesity, results from

experiments on animals implicate HFD as the culprit even in
absence of obesity. This was supported with results from resis-
tin-like molecule b knockout female mice, a model that lacks the
specific gene for colonic goblet cells, whereas HFD-fed mice were
not obese. These mice presented with the typical HFD-related
dysbiosis (Hildebrandt et al., 2009). It is noteworthy that the
type of fat affects the microbiome alteration as diets rich in satu-
rated fatty acids are thought to contribute to the development of
endotoxemia by enhancing the production of LPS, whereas poly-
unsaturated fatty acids are suggested to exert protective effects

by influencing systemic endotoxin concentrations, LPS clearance,
bile acid metabolism, intestinal alkaline phosphatase activity,
intestinal mucosal permeability, and microbiota composition
diversity (Bellenger et al., 2019; Cândido et al., 2020). Moreover,
saturated fatty acids were recently demonstrated to act as a non-
microbial toll-like receptor 4 (TLR4) agonists, triggering myeloid
differentiation primary response 88 (MyD88)-dependent or inde-
pendent inflammatory pathways culminating in the activation of
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-jB) and the production of inflammatory cytokines, in a simi-
lar fashion to LPS (Rocha et al., 2016). Moreover, mice fed HFD
rich in omega-6 fatty acids but not omega-3 fatty acids exhibited
a more pronounced metabolic endotoxemia (Kaliannan et al.,
2015). Transgenic mice over-converting omega-6 to omega-3 in
tissues exhibited an augmented production of intestinal alkaline
phosphatase, which subsequently alters GM composition,
reduces LPS production, maintains gut barrier function, and
reduces endotoxemia (Kaliannan et al., 2015). Importantly, lino-
leic acid and a-linolenic acid-enriched HFD-fed obese mice exhib-
ited a sex-dependent alleviation of endotoxemia and systemic
and AT inflammation, which was associated with sex-dependent
alterations in GM composition (Zhuang et al., 2018). This sug-
gests that linoleic acid may provide a protective effect against

Fig. 1. High fat diet-mediated gut dysbiosis and links to cardiovascular disease and sex-dependent factors. Significant increase in the F/B ratio
occurs after the consumption of a high-fat diet. The ensuing gut microbiota dysbiosis detrimentally affects the adipose tissue and the cardiovascu-
lar system through intricate pathways. Mechanistically, gut microbiota dysbiosis enhances lipopolysaccharide production, as well as its chylomi-
cron-mediated transport and paracellular diffusion. The latter is possible due to gut microbiota dysbiosis-mediated dysfunction of tight junctions
leading to a compromised gut integrity. Locally, LPS activates, through TLR4, the proinflammatory NF-kB pathway. Systemically, the increased
levels of serum LPS results in endotoxemia. Importantly, sex hormones are partly responsible for the differential modulation of these pathways
in either sex as indicated. Pathways involved in gut microbiota dysbiosis are presented in red, whereas those counteracting them in black. AT;
COX2, cyclooxygenase 2; ER-b; F/B; GM; HFD; IAP, intestinal alkaline phosphatase; IL; iNOS, inducible nitric oxide synthase; IR, insulin resis-
tance; LPS; MetS, metabolic syndrome; MUC2; MyD88; NF-kB; PUFA, polyunsaturated fatty acid; TLR4; TNF-a.
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metabolic endotoxemia in female mice, whereas a-linolenic acid
exerts a similar effect in male mice through modulating the gut-
adipose tissue axis (Zhuang et al., 2018). These variabilities
highlight the complex interplay of sex and diet in shaping the
microbiome community and its metabolic consequences.
Sex-Dependent Differences in Dysbiosis Con-

sequences: Compromised Gut Integrity and Meta-
bolic Endotoxemia. As mentioned in the previous section,
the detrimental effects of consumption of HFD are partly medi-
ated by dysbiosis evidenced by an augmented and reduced
relative abundance of Proteobacteria and Bacteroidetes, respec-
tively. Disruption of gut barrier function as well as metabolic
endotoxemia ensue (Satokari, 2020). Although a sizable body of
evidence consistently supports an increased F/B ratio under
these circumstances, an increased LPS would not be expected
given the observed reduction of the gram-negative Bacteroi-
detes. Paradoxically, increased plasma LPS levels were
reported after HFD in animal experiments (Cani et al., 2008)
and in obese humans in comparison with their lean controls
(Stoll et al., 2004; Trøseid et al., 2013). Such observations can
be attributed to the reduced expression of intestinal epithelial
tight junction proteins leading to a compromised gut barrier in
animals and humans, allowing for increased LPS transporta-
tion (Saad et al., 2016). As well, chylomicrons, lipoprotein par-
ticles mediating intestinal fat absorption, were found to
facilitate LPS transport across the intestinal lumen through
enterocyte-mediated absorption (Ghoshal et al., 2009), offering
an additional mechanism by which HFD can contribute to
increase plasma LPS levels.
Expectedly, metabolic endotoxemia will follow, whereas

the transport of microbial-associated molecular patterns
leads to systemic low-grade and subclinical inflammation via
the activation of TLR4 (Turnbaugh et al., 2006; Cani et al.,
2007; Rodriguez et al., 2020). Indeed, LPS binds to cluster of
differentiation 14 and the TLR4/Myeloid differentiation fac-
tor 2 receptor complex (Kitchens and Thompson, 2005; Lu
et al., 2008). TLR4 cascade was shown to mediate HFD-
induced inflammation. HFD feeding led to an increased
serum and fecal LPS, concurrently with increased F/B ratio
in male wild-type mice. Moreover, these mice suffered from
diet-induced colitis indicated by increased intestinal tumor
necrosis factor a (TNFa), interleukin (IL)-1b, inducible nitric
oxide synthase, cyclooxygenase 2, and phosphor-IK kinase b
NF-jB expression and activity together with a compromised
gut integrity and reduced expression of tight junctions pro-
tein occludin and claudin-1 (Kim et al., 2012). On the other
hand, HFD-fed TLR4 knockout mice were protected from
metabolic endotoxemia, as they had lower serum LPS com-
pared with their low-fat fed counterparts. At the same time,
the knockout mouse intestine did not show the same HFD-
induced inflammatory consequences (Kim et al., 2012).
Sexual dimorphism in the response to HFD-induced gut bar-

rier permeability and metabolic endotoxemia has been attributed
to differential hormonal modulation of these pathologic processes.
Estrogen has been shown to prevent metabolic endotoxemia and
chronic low-grade inflammation, which was suggested to be a
contributor to the cardiometabolic privilege of premenopausal
women (Santos-Marcos et al., 2019). Indeed, 17b-estradiol-treated
male, ovariectomized, and intact female mice exhibited reduced
LPS production and lower susceptibility to metabolic endotoxemia
and metabolic syndrome partly through upregulation of intestinal
alkaline phosphatase (Kaliannan et al., 2018). On the same note,

one study highlighted a protective effect of progesterone against
endotoxemia, where plasma levels of LPS negatively correlated
with plasma progesterone levels but positively correlated with
TNF-a plasma levels in pregnant women (Zhou et al., 2019).
This differential effect of sex hormones was shown to be

due to the alteration of expression and function of tight junc-
tions and mucin production, thus regulating HFD-induced
alteration of gut permeability. For example, progesterone
was found to upregulate the expression of the tight junction
protein occludin and inhibit NF-jB activation in LPS-stimu-
lated Caco-2 cells (Zhou et al., 2019). Similarly, estrogens
promoted gut barrier function through several mechanisms.
For instance, ERb was proposed to play a crucial role in regu-
lating cellular differentiation in colonic tissue as ERb�/�

mice exhibit epithelial hyperproliferation and compromised
integrity (Imamov et al., 2004; Wada-Hiraike et al., 2006).
This suggests a homeostatic role of estrogen in the mainte-
nance of colon integrity. Furthermore, estrogen-ERb cascade
was suggested to enhance mucin 2 (MUC2) secretion by
intestinal goblet cells, which offers epithelial protection.
Hence, the deletion of ERb disrupted the colon mucin layer
in female mice (Wada-Hiraike et al., 2006; Diebel et al.,
2015). Likewise, female mice during proestrus stage, charac-
terized by high estrogen levels, are protected against intesti-
nal injury in comparison with their male counterparts and
female mice in the diestrus stage that is characterized by low
circulating estrogen (Homma et al., 2005; Sheth et al., 2010).
This can be attributed to the lower mucus thickness observed
in the colon of diestrus female mice and male mice compared
with the proestrus ones (Elderman et al., 2017). Apart from
the induction of MUC2 production, estrogen is also found to
upregulate the expression of tight junctions in both male and
ovariectomized female rodents as well as in vitro monolayer
cultures (Homma et al., 2005; Braniste et al., 2009; Looijer-
van Langen et al., 2011). Consistent with these observations,
the differential effects of estrogen supplementation on meta-
bolic health observed in pre- and postmenopausal women
suggest that the loss of ovarian function may profoundly alter
estrogen signaling (Hulley et al., 1998; Rossouw et al., 2002).
Indeed, it was shown that ovariectomized mice exhibit tem-
poral and regional changes in gastrointestinal permeability
due to disruption of tight junctions (Collins et al., 2017).
Intriguingly, it was shown in some studies that TLR4 level in
female macrophages were higher after ovariectomy (Rettew
et al., 2009). Although males tend to have higher metabolic
endotoxemia, orchiectomized mice were more susceptible to
endotoxemia, and isolated macrophages presented higher
TLR4 level than intact males. At the same time, testosterone
treatment attenuated these events, suggesting an immuno-
suppressive effect of testosterone (Rettew et al., 2008). These
findings emphasize the complexity of the effect of sex hor-
mones on dysbiosis outcomes. Nevertheless, female sex
hormones in animal models consistently exhibited a protec-
tive effect on gut integrity and the resulting metabolic endo-
toxemia, mainly by upregulating intestinal tight junction
proteins.
Sex-Dependent Differences in Dysbiosis-Induced

Insulin Resistance and Adipose Inflammation. Diet-
induced metabolic derangement and its correlated cardiovas-
cular dysfunction have been suggested to be an outcome of
early adipose inflammation and insulin resistance, even in
the absence of explicit hyperglycemia (Shah et al., 2008;
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Nishimura et al., 2009; Gollasch, 2017; Elkhatib et al., 2019;
Rafeh et al., 2020). As previously demonstrated, dysbiosis
and altered gut permeability precede the emergence of meta-
bolic syndrome (Mart�ınez-Oca et al., 2020). Since HFD con-
sumption increased intestinal permeability by impairing the
function of tight junctions (Cani et al., 2008), intestinal
hyperpermeability and GM dysbiosis were suggested to fur-
ther the inflammatory phenotype in AT and to increase the
risk of cardiovascular diseases (Serino et al., 2012; Kallio
et al., 2015; Clemente-Postigo et al., 2019; Gasmi et al.,
2021). A great body of research attempted to establish an
understanding of the gut-adipose axis in metabolic dysfunc-
tion (Poggi et al., 2007; Samuel et al., 2008; Serino et al.,
2012). Accordingly, white adipose tissue (WAT) was identi-
fied as a major target of GM. Not only were GM fermentation
products shown to regulate WAT energy balance (Samuel
et al., 2008), but also GM regulated fat deposition in AT as
well as insulin resistance (B€ackhed et al., 2004; B€ackhed
et al., 2007; Velagapudi et al., 2010). Such observations are
of relevance given the contribution of WAT to the develop-
ment of metabolic inflammation leading to insulin resistance
and cardiovascular dysfunction (Bouloumi�e et al., 2005;
Hotamisligil, 2006; Bouloumi�e et al., 2008). In HFD-fed dia-
betic mice, dysbiosis increased the stromal vascular fraction
in WAT, in particular macrophages, lymphocytes, and preadi-
pocytes (Serino et al., 2012). Additionally, LPS migration into
the circulation has been suggested to be a contributing factor
to the onset of AT inflammation, insulin resistance, obesity,
and diabetes (Cani et al., 2007; Cani et al., 2008; Hersoug
et al., 2016). Interestingly, HFD consumption had a similar
effect to LPS subcutaneous infusion on elevating serum LPS
and promoting AT inflammation in male mice (Cani et al.,
2007). Significantly, HFD-fed TLR4 knockout mice did not
have increased proinflammatory cytokines in the isolated epi-
dydimal AT depot, whereas wild-type mice were hyperinsuli-
nemic and exhibited a proinflammatory response in the
epidydimal WAT manifested by increased TNFa, IL-1b, and
IL-6, and macrophage infiltration (Kim et al., 2012). More-
over, TLR4 knockout male mice had an increased insulin
sensitivity in subcutaneous and epidydimal WAT even in
presence of HFD feeding (Poggi et al., 2007). Consistently,
HFD-fed male mice showed an improved metabolic status
after eight weeks of antibiotic treatment, as serum LPS,
insulin, and fasting glucose were reduced. The epidydimal
WAT in the treated group had lower TLR4 activation, Jun
NH2-terminal kinase inactivation, lower nuclear factor of
kappa light polypeptide gene enhancer in B-cells inhibitor a
degradation, and inhibition of insulin receptor substrate 1
Ser307 phosphorylation. Additionally, the treatment group
had improved insulin signaling with increased protein kinase
B (Akt) phosphorylation and reduced macrophage infiltra-
tion. It is noteworthy that HFD-fed germ-free mouse models
were not vulnerable to HFD-induced insulin resistance
(Fleissner et al., 2010; Rabot et al., 2010).
As for sex-based differences, a recent study reported that

HFD induced weight gain and insulin resistance in males
but not in female mice with differences in gut microbiome
recorded at baseline (Peng et al., 2020). Moreover, E2 treat-
ment in intact female mice improved HFD-induced weight
gain, glucose intolerance, and insulin resistance possibly as a
result of the downregulation of lipogenic genes, such as sterol
response element binding protein-1 (SREBP-1) and leptin

and resistin genes expression in WAT (Bryzgalova et al.,
2008). Moreover, E2 intervention in ovariectomized female
mice prevented HFD-induced obesity (Bless et al., 2014).
Administration of E2 in ovariectomized female rats increased
leptin sensitivity and led to preferential subcutaneous adi-
posity, resembling the intact female littermates (Clegg et al.,
2006). Notably, subcutaneous fat pads were suggested to be
more sensitive to insulin than visceral fat (Chang et al.,
2018). This might be one of the many protective roles of
estrogens against metabolic impairment related to AT dys-
function, as premenopausal women have more subcutaneous
AT than men and postmenopausal women (Lemieux et al.,
1993). Furthermore, E2 was proposed to ubiquitinate and
degrade HIF1-a, eventually reducing adipose inflammation
and its subsequent metabolic derangements (Kim et al.,
2014). Typically, insulin resistance is associated with hyper-
trophic adipose expansion leading to increased tissue hypoxia
and elevated hypoxia inducible factor 1-a (HIF1-a) expres-
sion, which was suggested to contribute the inflammatory
cascade (Lumeng et al., 2007; Palmer and Clegg, 2014;
Wensveen et al., 2015).
Since adiposity patterns, insulin sensitivity, LPS levels, TLR

activation, hypoxia, and AT inflammation were all ameliorated
in the presence of estrogen, its enhancement of AT metabolic
state via GM modulation can be one of the protective roles
female sex hormones possess against cardiometabolic dysfunc-
tion. Interestingly, HFD-fed androgen receptor knockout male
mice had increased obesity, visceral adiposity and adipocyte
hypertrophy, glucose intolerance, and insulin resistance com-
pared with control males and HFD-fed females. These derange-
ments were linked to dysbiosis as antibiotic treatment corrected
the dysfunction (Harada et al., 2020). These observations further
emphasize the complexity and the importance of sex hormone
contribution to the GM-cardiometabolic interaction, particularly
the female sex hormones playing a modulatory role on several
intermediary factors of cardiometabolic insults as outlined above.
Figure 2 depicts the different pathways triggered by GM, leading
to WAT inflammation as well as their modulation by sex
hormones.
Nonetheless, it is prudent to mention that accumulating

evidence recognize sex hormone independent differences in
metabolism and response to metabolic challenge between
males and females (Manwani et al., 2015). Differences in
consequences of the genetic disparity between the XX and
XY chromosome combination extend well beyond sex hor-
mone production to comprise variable levels of X-linked
gene imprinting and expression, in addition to a consider-
able dimorphism in the complement of noncoding RNA
molecules production (Link et al., 2013). The study of the
metabolic sequalae of such differences was hampered for a
long time by the lack of ability of dissociating the concur-
rence of the XX or the XY combination with the correspond-
ing gonadal hormone production. Evidence from transgenic
mouse models expressing different combinations of sex
chromosomes in presence and absence of the corresponding
gonads showed a remarkable impact of the XX chromosome
combination on preferential subcutaneous AT distribution
regardless of the gonadal hormone status (Chen et al.,
2012). However, the increased subcutaneous adiposity in
this model was associated with increased insulin resis-
tance, thus emphasizing the protective effect of estrogen in
this regard. More recently, genetic association studies were
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conducted on humans to detect the effect of the X chromo-
some on metabolic and cardiovascular disease but had con-
flicting results. Although some studies found differential
associations with insulin resistance, atherosclerosis, and
coronary artery disease between sexes (Tukiainen et al.,
2014; Traglia et al., 2017), others failed to detect these dif-
ferences and attributed the observations to gonadal hor-
mones (Manwani et al., 2015). However, to our knowledge,
the interaction between sex chromosomes and dysbiosis
did not receive much attention and warrants detailed
investigation in the future.
Sex-Dependent Differences in Alteration of Short-

Chain Fatty Acids Production and Consequent Meta-
bolic Dysfunction. Another important component of HFD-
induced dysbiosis is the decline in SCFA generation, mainly
acetate, propionate, and butyrate, which were correlated
with numerous metabolic and cardiovascular disorders (Can-
fora et al., 2015; Chambers et al., 2018). Despite the exten-
sive research on the role of SCFA in the host wellbeing, the

exact role of SCFAs in regulating metabolic function remains
debatable. For instance, some evidence suggested a negative
correlation of fecal SCFAs levels with the host’s metabolic
function (Teixeira et al., 2013; de la Cuesta-Zuluaga et al.,
2018) with studies showing that SCFA levels were higher As
for acetate and propionate, it is suggested that they offset
LPS induced endotoxemia by lowering TNF-a and NF-jB pro-
duction as shown in human neutrophils and macrophages
in vitro experiments (Canfora et al., 2015). These two SCFAs
were shown to be effective in reducing TNFa production in
LPS-activated neutrophils, while repressing the activity of
NF-jB receptor in a human colon adenocarcinoma cell line
(Tedelind et al., 2007). Consistently, in vitro treatment of
human omental and subcutaneous adipocytes with propio-
nate, reduced mRNA expression of the proinflammatory fac-
tor resistin, and stimulated leptin mRNA expression (Al-
Lahham et al., 2010). Another study on human omental AT
supported the previous findings, as propionate treatment
declined both mRNA and protein levels of proinflammatory

Fig. 2. Detrimental effects of dysbio-
sis on adipose tissue homeostasis. Gut
microbiota dysbiosis amplifies high-fat
diet-mediated adipose tissue dysfunction
through increasing energy absorption,
weight gain, and adiposity. The subse-
quent development of insulin resistance
and adipose tissue inflammation leads
to the development of the metabolic syn-
drome linked to the emergence of car-
diovascular diseases. Testosterone and
estrogen inhibit TLR4 signaling. Estro-
gen decreases the level of circulating
LPS, enhances leptin sensitivity, decreases
insulin resistance, and limits consequences
of hypoxia by induction of the proteasomal
degradation of HIF-1a. Several therapeutic
interventions such as antibiotic treatment
and fecal microbiota transfer also posi-
tively modulate the depicted pathways.
Pathways implicated in gut microbiota
dysbiosis are presented in red, whereas
those counteracting them are presented in
black. AT; ATB, antibiotic; CVD; FMT;
GM; HFD; HIF-1a, hypoxia-inducible fac-
tor 1a; IL; MyD88; NF-kB, nuclear factor
k B; TLR4; TNF-a.
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cytokines like IL-4 and TNF-a (Al-Lahham et al., 2012). Addi-
tionally, animal models reared on HFD and treated with pro-
pionate had an improved insulin sensitivity, glucose
tolerance, thermogenesis, and mitochondrial function,
besides an improved metabolic state in brown adipose tissue,
liver, and muscles (Liang and Ward, 2006; Brial et al., 2018).
In humans, rectal administration of sodium acetate reduced
serum TNF-a in obese females (Freeland and Wolever, 2010).
Another trial on acute intravenous infusion of acetate in
women with hyperinsulinemia and overweight improved
serum peptide YY, glucagon-like peptide 1 and reduced circu-
lating TNFa and ghrelin (Freeland and Wolever, 2010). Path-
ways modulated by SCFAs are summarized in Figure 3.
Importantly, recent literature reveals that interventions tar-

geting GM have a differential impact on SCFA generation
across sexes. For instance, ciprofloxacin-metronidazole treat-
ment reduced SCFA production only in female mice consistent
with a reduction in the relative abundance of Firmicutes (Gao
et al., 2019). Alternatively, prebiotic supplementation was
shown to increase fecal butyrate output only in male but not
female rats (Shastri et al., 2015). A similar study in humans
demonstrated a differential effect whereby beta-glucan supple-
mentation led to an increased butyrate production in female
subjects but not in males (Trimigno et al., 2017). On the other
hand, SCFAs were proposed to promote the storage of trigly-
cerides through the activation of lipogenic hepatic enzymes
including SREBP, which show a positive differential expression
in women (B€ackhed et al., 2004; Jiang et al., 2016). This is sug-
gested to reflect in an increased microbiota-dependent lipid
storage and obesity risk in women. SCFAs also are known to
suppress the fasting-induced adipocyte factor, an inhibitor of
lipoprotein lipase (B€ackhed et al., 2004; Khan et al., 2016).
This increased lipoprotein lipase activity may lead to micro-
biota-dependent augmentation in fat storage, which may con-
tribute in part to sex differences in body composition (B€ackhed
et al., 2004). Henceforth, sex-differential response to GPR41
may contribute to microbiota-associated body weight sexual
dimorphism (Inoue et al., 2014). This is particularly important
as male but not female GPR41 knockout mice exhibited an
increased body fat mass and a decreased energy expenditure
(Bellahcene et al., 2013). Moreover, further sex-specific interac-
tions with SCFAs were reported where butyrate was shown to
increase estrogen secretion in granulosa cell culture models
(Lu et al., 2017). Indeed, conclusions about the involvement of
SCFAs in cardiometabolic derangements in sex-dependent
manner are hard to be drawn, and further studies are highly
needed for more solid evidence.

Sex-Dependent Impact of Gut Microbiome on
Metabolically Induced Cardiovascular

Dysfunction
Although traditional cardiovascular risk factors appear to

be related to the development of cardiovascular disease in
either sex, research has long recognized significant complexity
in their differential roles and relative weights (Njølstad et al.,
1996). For instance, analysis of a large case-control study
showed that the impact of diabetes and hypertension was
more pronounced on the development of myocardial infarction
in women than in men (Anand et al., 2008). Yet, the impact of
these two factors appeared to differ by age, being stronger in

younger men, leading to an age difference of cardiovascular
disease onset by about nine years. This further implicates the
role of sex hormones in the observed protective effect in pre-
menopausal females, as the incidence of both hypertension
(Lima et al., 2012) and diabetes (Heianza et al., 2013) in post-
menopausal females appear to exceed that in men. Interest-
ingly, it is well recognized that both disorders have strong
mechanistic links to adipose tissue dysfunction, particularly
perivascular adipose tissue (PVAT), observed in metabolic
impairment (Saxton et al., 2019). Significantly, female-specific
risk factors for cardiovascular disease such as polycystic ovary
syndrome and preeclampsia appear to have a strong metabolic
impairment component carrying the hallmarks of a dysfunc-
tional adipose tissue (Huda et al., 2017; Leon et al., 2019; Osi-
bogun et al., 2020). In the below sections, we examined the
impact of sex-based differences in the interconnection among
dysbiosis, metabolic impairment, and adipose inflammation
on incidence of cardiovascular disease.
Dysbiosis and Cardiovascular Dysfunction. HFD is

known to induce cardiovascular dysfunction (Martins et al.,
2015; Aghajani et al., 2017). Since HFD stimulates dysbiosis,
the microbiome-cardiovascular axis was extensively studied,
and dysbiosis was linked to several diseases such as hyper-
tension (HTN), atherosclerosis, and heart failure (HF) among
others (Tang and Hazen, 2017; Taylor and Takemiya, 2017;
Kappel and Federici, 2019; Razavi et al., 2019). For instance,
atherosclerotic plaques were found to contain bacterial DNA,
and these bacterial taxa were also present in the gut of the
same individuals (Ott et al., 2006; Koren et al., 2011), propos-
ing a possible role of microbial communities in plaque insta-
bility and the subsequent adverse effects (Koren et al., 2011).
In patients with HF, both metabolites and gut flora print
were significantly determinantal compared with healthy sub-
jects and were even worse in patients with decompensated
heart failure (Hayashi et al., 2018). Significantly, gut dys-
function involving disturbances in intestinal motility and villi
absorption, in addition to an impaired tissue perfusion and
edema, was also observed in HF patients (Krack et al., 2005;
Sandek et al., 2012). Undeniably, the HFD-induced impair-
ment of gut integrity and gut hyperpermeability were linked
to the aforementioned cardiovascular insults (Lewis and Tay-
lor, 2020).
Gut microbial signature in HTN was heavily investigated

in the last few decades (Mell et al., 2015; Kim et al., 2018).
Interestingly, fecal microbial transplantation from hyperten-
sive patients to germ-free mice induced HTN in these mice
(Li et al., 2017). Moreover, these results were also observed in
germ-free rats receiving GM from spontaneously hypertensive
rats (Shi et al., 2021). However, the impact of GM appears to
be complex as germ-free rats demonstrated a reversal of poor
vascular contractility and reduced blood pressure control
upon acquisition of normal GM (Joe et al., 2020). Indeed, a
decrease in microbial richness and diversity in prehyperten-
sive and hypertensive human subjects were recorded as well
(Li et al., 2017). Additionally, spontaneously hypertensive
and chronic angiotensin-II-induced hypertensive rat models
presented dysbiosis manifested by an increase in F/B ratio
compared with the normotensive controls (Yang et al., 2015;
Santisteban et al., 2017). Moreover, high-salt diet was shown
to deplete a strain of Lactobacillus; however, treating these
mice with this strain attenuated salt-sensitive hypertension
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(Wilck et al., 2017). Furthermore, HFD-induced dysbiosis was
shown to have a role in the development of the obstructive
sleep apnea-induced HTN (Durgan et al., 2016). HFD-induced
dysbiosis was also correlated with increased serum LPS-bind-
ing protein, IL-6, endothelial dysfunction, arterial stiffness,
aortic phosphorylated NF-jB, and NADPH oxidase in PVAT,
leading to a positive oxidative state. Interestingly, all these
insults were attenuated with antibiotic treatment (Battson
et al., 2018). Not only had been NADPH oxidase (NOX)-
related reactive oxygen species shown to be detrimental in
CVDs (Brandes et al., 2010), PVAT inflammatory and oxida-
tive changes were consistently reported to contribute to vas-
cular and cardiac autonomic dysfunction in HFD-fed rats
even prior to the development of overt metabolic impairment
(Al-Assi et al., 2018; Elkhatib et al., 2019; Rafeh et al., 2020),
implicating the GM-metabolic-AT-CVD axis, which will be
discussed later.
SCFAs may also contribute to the reduction of systemic

blood pressure and serum cholesterol levels (Den Besten
et al., 2013; Mari~no et al., 2017). High-fiber diet, diet supple-
mented with SCFA, or parenteral injection of SCFA
improved cardiometabolic health in several murine models
by reducing blood pressure and cardiac fibrosis (Brial et al.,
2018). It was proposed that the role of SCFA in blood pres-
sure (BP) regulation might be mediated by the activation of
GPR41 in the vascular endothelium (Jonsson and B€ackhed,
2017). As well, SCFAs were found to hold strong vasorelax-
ant properties (Poll et al., 2020). Interestingly, they were also
discovered to be ligands for olfactory receptor 78, a G protein-
coupled receptor expressed in the vasculature, which plays
an important role in vasoregulation and renin release and is

activated mainly by acetate and propionate. Olfactory recep-
tor 78 knockout mice had basal hypotension and low serum
renin level, possibly indicative of the opposing response of
GPR41 to SCFAs (Pluznick et al., 2013; Pluznick, 2014).
Importantly, SCFAs may also participate in regulating the

sympathetic tone. Actually, in GPR41 knockout male mice,
propionate was found to be a potent activator of sympathetic
ganglia through Gbc-PLCb-MAPK pathway rather than
cAMP synthesis inhibition (Kimura et al., 2011). Interest-
ingly, propionate was able to trigger epinephrine secretion in
sympathetic neurons. On the other hand, wild-type mice did
not have GPR41 expression in the mesenteric fat pad and
only presented GPR43 whose activation seemed to increase
leptin production. Henceforth, it was suggested that GPR43
mediate sympathetic stimulation by adipocytes activation
and leptin overexpression (Kimura et al., 2011). A recent
study on Wistar-Kyoto and spontaneously hypertensive male
rats revealed the strong association between dysbiosis and
sympathetic activation through the induction of inflamma-
tion and oxidative stress in the brain. Not only blood pres-
sure was corrected after fecal microbial transplantation from
Wistar-Kyoto to spontaneously hypertensive rats, but also
inflammation and oxidative stress in the paraventricular
nucleus were improved. However, fecal microbial transplan-
tation in the opposite direction deteriorated the inflamma-
tory, oxidative, and blood pressure state of the Wistar-Kyoto
rats simultaneously with poor gut integrity and increased
colonic TNF-a and circulating LPS, which were attenuated
in the former transplant. Worth mentioning, spontaneously
hypertensive rats had a lower butyrate receptor expression
in the hypothalamus, alongside a higher Th17 cells and

Fig. 3. Short-chain fatty acids regulate lipogenic, inflammatory, and neuronal pathways that are dysregulated in states of metabolic dysfunction.
The three major short-chain fatty acids are acetate, propionate, and butyrate. They improve cardiometabolic health through several pathways as
indicated, thus counteracting HFD-induced metabolic dysfunction. Akt; BP; FIAF, fasting-induced adipose factor; FMT; GPR; HFD; IL; LPL, lipo-
protein lipase; LPS; MAPK, mitogen-activated protein kinase; NF-kB; PKC; protein kinase C; PLC; PTEN, phosphatase and tensin homolog;
SCFA; SREBP-1; TNF-a; UCP-1, uncoupling protein 1.
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macrophage infiltration in the paraventricular nucleus (Toral
et al., 2019). Moreover, LPS infusion was found to induce
HTN in normotensive rats, by provoking neuroinflammation
in the rostral ventrolateral medulla, which is considered an
important part in intensifying the sympathetic stream to the
blood vessels (Wu et al., 2012). Interestingly, another study
on the same model indicated a similar pattern of dysbiosis;
increased F/B ratio, in addition to a notable reduction in ace-
tate, increased gut sympathetic outflow, elevated blood pres-
sure, impaired gut integrity, impaired endothelial-dependent
relaxation to acetylcholine, and NOX overactivation. Treating
spontaneously hypertensive rats with losartan, an angiotensin
2 receptor (AT2-R) antagonist, preserved gut integrity and
enhanced functionality and immune response in the vascula-
ture, improving acetylcholine-induced relaxation and increased
Tregs infiltration (Santisteban et al., 2017; Robles-Vera et al.,
2020). Indeed, these lines of evidence support the involvement
of dysbiosis in inducing diet-related HTN and sympathetic
overactivation, alongside with neuroinflammation and oxida-
tion, which is proposed to be corrected by SCFAs. Figure 4
depicts the role of GM in the interaction between the dysbiosis,
cardiometabolic dysfunction, and neuroinflammation.
On another note, accumulating evidence highlighted the role

of dysbiosis in augmenting the production of the bacterial meta-
bolite trimethylamine-N-oxide (TMAO), which is suggested to be
an indicator of CVDs (Moludi et al., 2020). TMAO is a plasma
metabolite formed through a metaorganismal pathway, and its
level is depending on dietary intake mainly from animal protein
sources like red meat, egg yolk, and seafood, which are abundant
in choline, phosphatidylcholine, and L-carnitine (Anders et al.,
2013; Tang et al., 2015). These compounds are initially metabo-
lized by GM to form trimethylamine (TMA) and then converted
by the host liver enzyme flavinmonooxygenase 3 (FMO3) to form
TMAO (Bennett et al., 2013). Noteworthy, FMO3 knockdown in
female mice protected from diet-induced obesity and reduced
hypertrophy and adiposity in WAT while improving total meta-
bolic health (Schugar et al., 2017). Increased TMAO has been
anticipated to induce insulin resistance and adipose inflamma-
tion in mice as well as increasing the risk for type 2 diabetes in
human subjects (Tang et al., 2017). Circulating TMAO was
linked to elevated vascular inflammation through the incitement
of proinflammatory cytokines expression and leukocytes recruit-
ment (Seldin et al., 2016). Also, dietary supplementation of cho-
line in mice increased TMAO levels, macrophage foam cell
formation, and atherosclerosis incidence (Wang et al., 2011).
Moreover, it prompted platelet hyperactivity (Trip et al., 1990;
Marcucci et al., 2014) and enhanced thrombosis (Zhu et al.,
2016), which are considered major risk factors for developing
CVDs. Indeed, serum TMAO level was tightly correlated with
atherosclerosis (Tang and Hazen, 2017). In the same context, a
human study revealed that subjects with higher serum TMAO
levels had a twofold risk increase for developing major cardiovas-
cular events compared with subjects with low TMAO (Tang
et al., 2013). TMAO levels had also been suggested to be an accu-
rate indicator for heart failure diagnosis (Tang et al., 2014). It
was found to fuel endothelial dysfunction as well by upregulating
vascular adhesion molecule-1, monocyte attraction, and NF-jB
activation (Ma et al., 2017).
As stated before, HFD induces AT dysfunction, which pre-

dispose to metabolic and cardiovascular disorders. The AT
surrounding the vascular bed, referred to as PVAT, which

has been identified as a crucial component of the vascular
regulatory machinery. It is worth mentioning that PVAT has
been suggested to be one of the most sensitive AT depots to
positive energy intake and the first to undergo negative
remodeling including hypertrophy, inflammation, and hyp-
oxia, which were observed in early metabolic impairment
(Elkhatib et al., 2019; AlZaim et al., 2020). Moreover, resis-
tance arterioles from obese mice showed a PVAT-dependent
impairment in insulin/Akt-mediated vasodilatation due to
reduced adiponectin and AMPK downstream effects, which
was restored with Jun NH2-terminal kinase inhibition
(Meijer et al., 2013). HFD induced PVAT dysfunction might
be mediated via sympathetic overactivation and insulin resis-
tance that have been linked to a wide range of subclinical
cardiovascular insults such as endothelial dysfunction and
cardiac autonomic neuropathy (Britton and Fox, 2011; Bul-
loch and Daly, 2014; Greenstein et al., 2009; Akoumianakis
et al., 2017; Alaaeddine et al., 2019; AlZaim et al., 2020; Bak-
kar et al., 2020; Rafeh et al., 2020). As such, it becomes plau-
sible that PVAT inflammation might mediate the effect of
HFD-induced dysbiosis on early metabolic impairment and
cardiovascular dysfunction. This hypothesis is presented in
Figure. 5. However, limited studies have explored the associ-
ation between PVAT and HFD-induced dysbiosis. One recent
study examined the role of PVAT FMO3 in response to direct
TMA stimulation in tone regulation in excised aortas from
male rats. TMA exerted a contractile effect through activating
L-type voltage-gated calcium channels that was found to be
dependent on endothelium rather than PVAT, suggesting that
TMAO and TMA modulate vascular tone by a direct effect of
vascular smooth muscle cells (Restini et al., 2021). However, to
our knowledge no studies were conducted to investigate the
impact of dysbiosis or SCFAs on PVAT modulation and thus
the HFD-dysbiosis-PVAT axis remains elusive.
Sex-Dependent Impact of Dysbiosis on Cardio-

vascular Dysfunction. Sex-dependent cardiovascular risk
and pathology are well documented in the literature, as men
have a higher absolute risk compared with premenopausal
women, a difference that diminishes after menopause, indicat-
ing the important role of sex hormones in CVDs (Kim and
Reaven, 2013; Pei et al., 2017; WHO, 2017; Chella Krishnan
et al., 2018). Although metabolic disorders and cardiovascular
diseases have long been intertwined, early metabolic impair-
ment has been the focus of interest as it imparts predisposition
to inevitable CVDs. This effect is mainly mediated by subclinical
events such as metabolic endotoxemia, AT inflammation, and
insulin resistance (Heilbronn and Campbell, 2008; Shah et al.,
2008; Nishimura et al., 2009; Kallio et al., 2015; Wensveen
et al., 2015). Interestingly, GM has been identified as a major
driver of these anomalies. Since sex-dependent differences exist
in dysbiosis, the differential GM effect is expected to be extrapo-
lated to CVDs. As discussed previously, estrogens attenuate
HFD-induced gut hyperpermeability and LPS transport either
through leaky membranes or chylomicrons together with the
consequent metabolic endotoxemia, Th17 cell activation, and
Tregs inhibition (Cani et al., 2007), which were found to be higher
in men. As stated previously, LPS activates TLR4 on target tis-
sues including AT and macrophages, triggering proinflamma-
tory cascade and activating NF-jB. AT overactivation and
hypertrophied expansion due to dysbiosis was linked to
increased leptin production, which in turn will activate
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sympathetic outflow. In parallel, LPS-induced neuroinflamma-
tion triggers sympathetic firing. The resultant sympathetic over-
activation and insulin resistance, which are expected to be
higher in males, will lead to early inflammation and negative
remodeling of PVAT, precipitating a wide range of subclinical
cardiovascular insults (Greenstein et al., 2009; Britton and Fox,
2011; Bulloch and Daly, 2014; Akoumianakis et al., 2017; Kha-
tib et al., 2018; Alaaeddine et al., 2019; Bakkar et al., 2020).
Since estrogen holds a protective effect against hypoxia in AT,
possibly estrogen will block dysbiosis-mediated dysfunction car-
diovascular dysfunction by interfering with PVAT inflam-
mation. Additionally, progesterone was found to have an
anti-inflammatory effect against LPS mediated neuroin-
flammation (Lei et al., 2014).
The evidence regarding sexual dimorphism in HFD-

induced PVAT remodeling is scarce; however, females tend to
have a more functional PVAT compared with males. In this
regard, ovariectomy in murine models instigated endothelial
and PVAT dysfunction mediated by increased reactive oxy-
gen species when compared with their sham littermate
(Wang et al., 2014; Taylor and Sullivan, 2016). Additionally,
an enhanced anticontractile role of PVAT was observed in
female pigs and was attributed to a higher sensitivity of adi-
ponectin receptor in coronary artery (Ahmad et al., 2017).

Taken together, these observations suggest a possible role of
PVAT in mediating a sex-dependent cardiovascular impact of
dysbiosis in early metabolic dysfunction.
On another note, the protective effect of estrogen on HTN

development is mainly through inducing endothelial nitric
oxide synthase mediated vasorelaxation (Sobrino et al., 2017;
Bucci et al., 2002), while at the same time inhibiting vasocon-
stricting agents such as angiotensin-II (Schunkert et al., 1997).
However, mounting evidence suggests the role of immune
responses in mediating sex-dependent GM-HTN axis. For
instance, dysbiosis was linked to an increased activity of Th17
cells, which had a role in initiating arterial hypertension (Guzik
et al., 2007; Ivanov et al., 2009; Wenzel et al., 2016). In this
regard, hypertensive male rats had higher Th17 activity com-
pared with females (Gillis and Sullivan, 2016).

Therapeutic Interventions for Cardiometabolic
Consequences of Dysbiosis

Bidirectional interactions between GM and cardiovascular
drugs have been reported for quite some time. Indeed, not
only has the gut bacterial community been implicated in
altering the pharmacokinetics of some cardiovascular drugs,
but treatment with certain drug classes has also been

Fig. 4. Gut microbiota dysbiosis in the metabolic dys-
function-neuroinflammation-cardiovascular disease con-
tinuum. Gut microbiota increases the F/B ratio resulting
in an oxidative stress in the brain leading to neuroin-
flammation and sympathetic overactivation. The latter
consequently increases blood pressure and predisposes
to the development of hypertension. Gut microbiota dys-
biosis also leads to endotoxemia and increases Th17 and
macrophage brain infiltration, both leading to arterial
hypertension. Gut microbiota dysbiosis also detrimen-
tally accelerates adipose tissue dysfunction, leading
to an increased production of leptin, which further
augments the activation of the sympathetic system.
Additionally, endotoxemia inhibits the rather beneficial
accumulation of Treg cells in the brain, which further
augments inflammation. Estrogen inhibits the develop-
ment of hypertension through an eNOS-mediated vaso-
dilatory effect and through decreasing serum levels
of AngII. Progesterone as well as fecal microbiota trans-
fer inhibits neuroinflammation and its downstream con-
sequences. The antagonism of AT2-R also reverses
immune cell profile alterations mediated by gut micro-
biota dysbiosis. Pathways involved in gut microbiota
dysbiosis are presented in red, whereas those counter-
acting them in black. AngII, angiotensin II; AT; AT2-R;
BP; eNOS, endothelial nitric oxide synthase; F/B; FMT;
GM; LPS; Th17, T helper cell 17; Treg.
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associated with favorable changes in GM populations. For
instance, certain phyla of gut bacteria were shown to metabo-
lize digoxin and amlodipine, reducing their availability at
target tissues, whereas others were proposed to decrease the
absorption of simvastatin and captopril (Tuteja and Fergu-
son, 2019). In parallel, one human study showed that the
low-density lipoprotein cholesterol lowering effect of a
4–8-week rosuvastatin treatment was associated with a
change in the abundance of Firmicutes (Liu et al., 2018). As
for animal studies, atorvastatin therapy appeared to reverse
HFD-induced dysbiosis in male rats (Khan et al., 2018). Simi-
larly, captopril treatment reduced dysbiosis and improved gut
permeability associated with hypertension in spontaneously
hypertensive rats (Santisteban et al., 2017). However, none of
these interventions has been examined systematically, and
the underlying mechanisms remain unclear. From a different
perspective, tailored pharmacological interventions targeting
GM with the purpose of imparting protective cardiovascular
research have been proposed. Indeed, as bacterial metabolic
reactions have been thoroughly recognized, selective
approaches could be designed to modify harmful metabolite
production. As such, small molecule inhibitors of TMAO syn-
thesis were designed and proposed to treat atherosclerosis
(Wang et al., 2015). Moreover, nanoparticle-based approaches
were proposed either to deliver useful bacterial species associ-
ated with increased SCFA production or reduced LPS, or to
scavenge TMAO and proinflammatory cytokines (Kazemian

et al., 2020). Nevertheless, all these interventions remain in
early stages, and the current viable options for prevention of
detrimental outcomes of gut bacterial alteration remain
related to direct manipulation of bacterial population using
probiotics, antibiotics, fecal microbial transplantation, or
using bacterial metabolites such as SCFAs as described
below. The impact of these interventions on dysbiosis trig-
gered pathways are demonstrated throughout Figures 1-5.
Probiotics. Probiotics are nonpathogenic strains of bacte-

ria, usually belonging to Lactobacilli and Bifidobacteria,
which have been used to reset microbiome dysbiosis
(Holzapfel and Schillinger, 2002; Isolauri et al., 2004;
Williams, 2010). Some clinical trials attempted to explore pro-
biotics as a potential intervention with the symptoms in some
neurologic and psychologic diseases such as amiotrophic lat-
eral sclerosis and schizophrenia (Severance et al., 2017;
Mazzini et al., 2018), whereas others focused on using differ-
ent strains of probiotic bacteria as a potential therapy and
early preventive technique for cardiovascular and metabolic
disorders. However, these trials have had controversial find-
ings. On one hand, several studies showed that probiotic
administration improved cardiometabolic and inflammatory
parameters not only in metabolically impaired but also in bor-
derline individuals. For instance, a double-blind placebo-con-
trolled trial showed that daily ingestion of Lactobacillus
plantarum in hypercholesteremic individuals for 12 weeks sig-
nificantly improved blood pressure, reduced serum total

Fig. 5. Perivascular adipose tissue dysfunction: Novel
mechanisms of gut microbiota dysbiosis-mediated car-
diovascular derangements. A healthy perivascular adi-
pose tissue secrets adiponectin, which elicits an
AMPK-mediated anticontractile effect. The consump-
tion of a high-fat diet causes sympathetic overactiva-
tion and insulin resistance, leading to perivascular
adipose tissue expansion, adipocyte hypertrophy, and
adipose tissue inflammation, thus jeopardizing the
anticontractile activity of perivascular adipose tissue.
Importantly, the consumption of a high-fat diet causes
gut microbiota dysbiosis, which enhances NOX-medi-
ated production of ROS, a pathway that is augmented
after ovariectomy. Additionally, gut microbiota dysbio-
sis increases aortic NF-kB signaling, leading to arte-
rial stiffness. Microbial metabolism products including
TMA and TMAO participate in gut microbiota dysbio-
sis-caused perivascular adipose tissue dysfunction.
TMA, through its activity on VSMCs induces L-type
voltage-gated calcium channels, which counteracts
perivascular adipose tissue-mediated anti-contractile
effect. AMPK; GM; HFD; NOX; PVAT; ROS; TMA;
TMAO; VCAM-1; VSMCs, vascular smooth muscle
cells.
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cholesterol, LDL, and triglycerides, while increasing high-den-
sity lipoprotein (HDL) levels (Costabile et al., 2017). The same
strain was used for 6 weeks in subjects who smoked and had
similar findings, reducing CV risk factors (Naruszewicz et al.,
2002). In postmenopausal women with metabolic syndrome,
supplementation with the same strain for 90 days decreased
blood glucose and homocysteine (Barreto et al., 2014). On the
same note, Lactobacillus plantarum 299v supplementation for
6 weeks in men with stable coronary artery disease significan-
tly improved endothelium dependent vasodilatation, induced
some changes in GM by enriching Lactobacillus genus,
decreased plasma propionate, leptin and IL-8 and 12, without
changing blood glucose, lipid profile, and body weight (Malik
et al., 2018). Another strain of bacteria, Bifidobacterium
longum BB536, exhibited beneficial effects after 12 weeks of
blinded controlled intervention of food supplement intake con-
taining red yeast extract, niacin, and coenzyme Q10 on indi-
viduals with a low score of CV risk. The results showed in
improved levels of atherogenic lipid profile (Ruscica et al.,
2019). Men with mild hypercholesteremia were treated with
isoflavone-supplemented soy product fermented with Entero-
coccus faecium CRL 183 and Lactobacillus helveticus 416 for
42 days and showed an improved serum lipid profile, but nei-
ther CRP nor fibrinogen (Cavallini et al., 2016). Another study
examined the role of Bifidobacterium lactis in patients with
metabolic syndrome. The organism was supplemented in fer-
mented milk and given for 45 days. Treated subjects showed a
reduction in BMI, serum TNF-a, and IL-6, while improving
lipid profile (Bernini et al., 2016). A 2-month treatment with
yogurt supplemented with a probiotic mix (Lactobacillus aci-
dophilus La5 and Bifidobacterium lactis Bb12) in men and
women with metabolic syndrome improved fasting blood glu-
cose and insulin sensitivity. Importantly, it improved some
vascular and endothelial function markers, like vascular cell
adhesion molecule 1 (VCAM-1) and plasminogen activator
inhibitor 1 (Rezazadeh et al., 2019). Healthy subjects with
BMI at the upper limit of the healthy range randomized for a
12-week treatment with Bifidobacterium lactis with arginine
supplementation appeared to have a better endothelial func-
tion and hence a reduced risk of developing atherosclerosis
(Matsumoto et al., 2019). This suggests a possible therapeutic
and preventive effect of probiotics on endothelial function and
CV risk. However, conclusions should be drawn carefully from
these results given the possible contribution of arginine sup-
plementation to endothelial improvement and the interven-
tion being on low-risk subjects.
Interestingly and worth investigating is the interplay

between sex hormones and probiotics, as these positive out-
comes seem to be independent of the status of sex hormones.
In obese postmenopausal women, administration of multispe-
cies probiotic for 12 weeks seemed to improve metabolic
parameters: serum insulin, glucose, LPS, total lipid profile,
uric acid, and HOMA-IR in both high and low dose groups;
however, reduced adiposity was only observed in the high-
dose arm, suggesting an improved gut permeability and
reduced cardiometabolic risk factors (Szuli�nska et al., 2018).
Similarly, premenopausal women diagnosed with polycystic
ovarian syndrome were treated with pomegranate juice with
and without probiotics mix (Lactobacillus rhamnosus GG,
bacillus koagolans, and indicous) for 8 weeks. The group
receiving probiotics showed an improved metabolic and
inflammatory function alongside reduction in blood pressure

(Esmaeilinezhad et al., 2020). Women aged 20–50 years with
arterial HTN treated with a probiotic cocktail (Lactobacillus
para casei LPC-37, Lactobacillus rhamnosus HN001, Lacto-
bacillus acidophilus NCFM, and Bifidobacterium lactis
HN019) for 8 weeks showed an improved fasting blood glu-
cose, cholesterol, and elevated HDL level compared with the
baseline. Interestingly, probiotics improved autonomic func-
tion and heart rate variability by reducing the low frequency
domain, without significantly changing blood pressure; yet
systolic BP was reduced by 5 mmHg compared with the pla-
cebo (Rom~ao da Silva et al., 2020)
On the other hand, several clinical trials failed to record

therapeutic benefits of probiotics on metabolic and cardiovas-
cular outcomes. For instance, the commercial probiotic
VSL#3

,, which contains 8 different strains of lactic acid bacte-
ria, was used in a twice daily intervention for 10 weeks in
men and women with nonalcoholic fatty liver disease. It did
not appear to improve cardiovascular risk factors and liver
injury scores. Nevertheless, it improved HOMA-IR (Chong
et al., 2021). Another randomized controlled crossover study
showed that metabolic syndrome symptoms were not allevi-
ated by a daily intervention with Lactobacillus reuteri V3401
strain for 12 weeks. Yet, this intervention was able to reduce
some inflammatory markers, IL-6 and VCAM-1 (Tenorio-
Jim�enez et al., 2019). Although probiotics exhibited some
beneficial metabolic outcomes in human trials, results
seemed to be dependent on the bacterial species used. As
such, some probiotics did not seem to change dysbiosis-
related parameters such as gut permeability compared with
the control groups (Leber et al., 2012; Ivey et al., 2015;
Stadlbauer et al., 2015; Grąt et al., 2017). For instance, using
Lactobacillus casei Shirota for 12 weeks in subjects with met-
abolic syndrome did not correct dysbiosis nor improve gut
integrity (Stadlbauer et al., 2015). Thus, conclusions drawn
from probiotics intervention must be specified to the strains
and concentrations used. Another important note is that not
only different strains have been used in probiotics studies,
but even some trials used different approaches in implement-
ing the interventions, such as using probiotics with other die-
tary components (Cavallini et al., 2016; Scorletti et al., 2018;
Rezazadeh et al., 2019; Ruscica et al., 2019), or other dietary
interventions and lifestyle modification,s such as calorie
restriction and physical activity (Behrouz et al., 2017). There-
fore, the role of probiotics in combating metabolic and cardio-
vascular insults must be carefully investigated, and studies
should be accurately designed to limit other confounding fac-
tors such as dietary and lifestyle modifications. However,
controlled use of probiotics can be safe and useful in prevent-
ing CVDs and metabolic derangements in low-risk individu-
als alone or in combination with other compounds such as
prebiotics (Behrouz et al., 2017; Trotter et al., 2020).
Antibiotics. Antibiotics were proposed to be one of the

interventions to achieve eubiosis (Ianiro et al., 2016). How-
ever, few studies explored the efficacy of antibiotics in ame-
liorating dysbiosis related cardiometabolic dysfunction. For
example, one study used antibiotics to reset GM community
in patients with type 2 diabetes mellitus and obesity. Yet,
major metabolic parameters such as insulin sensitivity, sys-
temic inflammation, gut permeability, and adipocyte size did
not change positively in response to a 7-day treatment of
amoxicillin, vancomycin, or placebo (Reijnders et al., 2016).
One case study on a postmenopausal woman suffering from
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chronic resistant HTN for 3 years, which was uncontrolled on
more than 3 antihypertensive drugs, in addition to a history
of metabolic and immune pathologies including diabetes and
arthritis, reported a temporary (6-month) improvement of
her HTN control upon treatment with a postoperative antibi-
otic mix (IV vancomycin, rifampin, and ciprofloxacin orally)
(Qi et al., 2015). Given the adverse effects associated with
antibiotics use and the risk of development of antibacterial
resistance, this might be the least desirable intervention to
correct dysbiosis and related pathologies.
Fecal Microbial Transplantation. Fecal microbial

transplantation (FMT) is a novel method that has been
recently suggested to induce eubiosis and alleviate patholo-
gies mediated by disturbed gut microbiome. It is the process
of isolating GM from healthy donors to transplant it into dis-
eased subjects. FMT can be done through various methods
that are relatively safe and noninvasive, rectally like enema,
naso-gastric route, or orally by capsules (Lagier, 2014; Wang
et al., 2016). Transplanted microbiota can be homologous
from the same person and heterologous/allogenic from first-
degree relatives or other healthy subjects. Interestingly, allo-
genic GM transplantation was found to be more effective
than homologous interventions (Grehan et al., 2010; Wang
et al., 2016; Schepici et al., 2019). Adverse effects reported
after FMT are not serious. The side effects reported were
mainly abdominal discomfort and diarrhea for a few hours
after the procedure (Lagier, 2014). However, there remains
concerns about the potential safety/side effects related to the
nonbacterial component of the fecal material transferred
(Bojanova and Bordenstein, 2016). A preliminary report
observed that sterile protein isolates from donor fecal mate-
rial were able to induce the required response in recipients
(Ott et al., 2017); however, future investigation will be
required to determine the possibility of fractionation and
reducing the content being transplanted to the necessary
organisms only.
FMT has been considered as one of the important lines of

life-saving treatments for patients with Clostridium difficile
infections as these patients had improved outcomes and less
chances for reoccurrence than those receiving conventional
treatments (Van Nood et al., 2013; Kelly et al., 2016; Lee
et al., 2016). It was even suggested that FMT can be promis-
ing in eradicating multidrug resistant microorganisms (Saha
et al., 2019). Since GM has been identified as an important
variable in the pathogenicity and prognosis of a large set of
metabolic and cardiovascular diseases, FMT might be effec-
tive in correcting and alleviating dysbiosis related dysfunc-
tions, especially the ones starting early on and having no
clear treatment regimens.
One clinical trial on male subjects with metabolic derange-

ments including hyperinsulinemia, BMI above 30, elevated
waist circumference, and increased adiposity treated with
purified GM from lean and healthy donors (allogenic trans-
fer) matched in sex and age through a duodenal tube over a
6-week period showed improved insulin sensitivity and
microbial diversity favoring butyrate producing bacteria such
as Roseburia intestinalis compared with the control group
receiving an autologous transfer (Vrieze et al., 2012). How-
ever, another double-blinded randomized clinical trial using
FMT delivered through capsules once per week from healthy
donors to subjects with obesity and insulin resistance did not
record any difference in either parameter after 12 weeks of

intervention (Reijnders et al., 2016). Similar results were
recorded from a randomized trial of obese adolescents, after
ingestion of 28 capsules of lean donors’ GM. Up to 26 weeks
postintervention, recipients of either sex did not show any
evidence of improvement neither in metabolic parameters
such as insulin sensitivity nor in obesity, although the cen-
tral to peripheral fat ratio was reduced in the FMT arm only
(Leong et al., 2020). Furthermore, FMT in patients with non-
alcoholic fatty liver disease who suffered from insulin resis-
tance delivered directly to the colon from autologous and
allogenic sources did not improve insulin resistance; however,
allogenic FMT improved gut permeability (Craven et al.,
2020). Also, FMT in patients with metabolic syndrome from a
healthy vegan donor did not alleviate TMAO levels and vas-
cular inflammation (Smits et al., 2018). Although FMT has
been revolutionary in treating diseases like Clostridium diffi-
cile infections, ulcerative colitis, and others, its role in cardio-
metabolic dysfunction is not fully understood, requires
further investigation, and its long-term efficacy has yet to be
established (Zhang et al., 2019b).
Short-Chain Fatty Acids. In human studies, SCFAs

were measured as a secondary outcome of dietary interven-
tion rather than being the treatment per se, and most evi-
dence is drawn from animal studies. One recent study using
rectal capsule delivery of SCFAs in a triple-blinded random-
ized trial examined the effect of 1 week of SCFAs administra-
tion on psychosocial stress of 66 healthy men. In the two
intervention arms, low and high SCFAs were equally suc-
cessful in reducing cortisol levels in response to psychosocial
stress, and both had an increased serum SCFAs as well com-
pared with the placebo arm (Dalile et al., 2020). The Omni-
Heart study, which included 164 adults, assessed the role of
macronutrients on serum SCFAs levels. Three isocaloric and
high-fiber diets rich in either carbohydrate, protein, or unsat-
urated fat were applied for 6 weeks. The results indicated dif-
ferences in SCFAs serum levels in response to different diets,
which were correlated with some cardiometabolic aspects.
For instance, the butyrate level was only increased by a high-
protein diet and was associated with decreased HDL levels
and ghrelin and increased insulin and glucose levels (Mueller
et al., 2020). A lot of questions and concerns arise regarding
the use of SCFAs for therapeutic purposes in humans, espe-
cially in cardio and metabolic pathologies. Specifically, thera-
peutic dose selection, safety and efficacy of single or combined
use, and most importantly the long-term effects of their use.
Henceforth, more clinical studies should be done using SCFAs
as a therapy for early metabolic derangements in a sex-depen-
dent fashion.

Conclusion
Dysbiosis is a common occurrence in patients suffering from

cardiometabolic conditions. Not only do GM alterations in these
patients appear to be driven by the same risk factors of the
other pathologies, but they also seem to contribute to and drive
the molecular changes leading to cardiovascular involvement,
including AT inflammation, particularly in PVAT. Sexual
dimorphism is evident is several steps starting at the differen-
tial effect of sex hormones on GM diversity and stability,
encompassing sex-dependent effects on GM metabolite produc-
tion, gut permeability, vulnerability of AT to inflammatory
changes, and culminating in a different susceptibility to CVD
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incidence. Future investigation utilizing systematic approaches
is required for a better understanding of the pathways involved
to allow for tailored therapy for effective management of early
cardiometabolic dysfunction in either sex.
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