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ABSTRACT
Regulators of G protein signaling (RGS) proteinsmodulate G protein–-
coupled receptor (GPCR) signaling by acting as negative regulators
of G proteins. Genetic variants in RGS proteins are associated with
many diseases, including cancers, although the impact of these
mutations on protein function is uncertain. Here we analyze the
RGSdomains of 15 RGS protein family members using a novel bio-
informatic tool that measures the missense tolerance ratio (MTR)
using a three-dimensional (3D) structure (3DMTR). Subsequent per-
mutation analysis can define the protein regions that are most sig-
nificantly intolerant (P < 0.05) in each dataset. We further focused
onRGS14, RGS10, andRGS4. RGS14 exhibited seven significantly
tolerant and seven significantly intolerant residues, RGS10 had six
intolerant residues, and RGS4 had eight tolerant and six intolerant
residues. Intolerant and tolerant-control residues that overlap with
pathogenic cancermutations reported in the COSMIC cancer data-
base were selected to define the functional phenotype. Using com-
plimentary cellular and biochemical approaches, proteins were
tested for effects on GPCR-Ga activation, Ga binding properties,
and downstream cAMP levels. Identified intolerant residues with
reported cancer-linked mutations RGS14-R173C/H and RGS4-
K125Q/E126K, and tolerant RGS14-S127P and RGS10-S64T

resulted in a loss-of-function phenotype in GPCR-G protein signal-
ing activity. In downstream cAMP measurement, tolerant RGS14-
D137Y and RGS10-S64T and intolerant RGS10-K89M resulted in
change of function phenotypes. These findings show that 3DMTR
identified intolerant residues that overlap with cancer-linked muta-
tions cause phenotypic changes that negatively impact GPCR-G
protein signaling and suggests that 3DMTR is a potentially useful
bioinformatics tool for predicting functionally important protein
residues.

SIGNIFICANCE STATEMENT
Human genetic variant/mutation information has expanded rapidly
in recent years, including cancer-linked mutations in regulator of
G protein signaling (RGS) proteins. However, experimental testing
of the impact of this vast catalogue of mutations on protein func-
tion is not feasible. We used the novel bioinformatics tool three-
dimensional missense tolerance ratio (3DMTR) to define regions
of genetic intolerance in RGS proteins and prioritize which cancer-
linked mutants to test. We found that 3DMTR more accurately
classifies loss-of-function mutations in RGS proteins than other
databases thereby offering a valuable new research tool.

Introduction
Since the publication of the human genome and the develop-

ment of bioinformatic sequencing tools, human genetic variant
information is being identified rapidly. These advances led to

the creation of many publicly available databases that reflect
both healthy and diseased human populations. However, exper-
imental testing of the vast catalog of identified mutations is
simply not feasible. Missense mutations are genetic variations
where a single base pair substitution produces a different
amino acid at the same position. Variations in protein structure
can affect folding, stability and aggregation, thereby affecting
the function of signaling proteins (Thusberg and Vihinen,
2009). Functionally relevant genetic variation has been reported
in many proteins, including the regulators of G protein signal-
ing (RGS) (Squires et al., 2021).
RGS proteins play a vital role modulating G protein–

coupled receptor (GPCR)-G protein signaling events. All RGS
proteins share an evolutionary conserved RGS domain that
binds active Ga subunits and acts as GTPase accelerating
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proteins (GAPs), negatively regulating GPCR-Ga signaling
(Tesmer et al., 1997; Hollinger and Hepler, 2002; Willars,
2006). Outside of their GAP function, RGS proteins competi-
tively bind active Ga and receptors to promote the rapid
cycling of Ga subunits between active and inactive states
(McCoy and Hepler, 2009).
Recent deep sequencing studies have shown GPCR-G

protein complexes to be frequently mutated in cancer
(Kan et al., 2010; O’Hayre et al., 2013; DiGiacomo et al.,
2020). GPCRs are expressed in cancerous tissues and
mediate proliferation, survival, invasion, and metastasis
(Gutkind 1998; Hurst and Hooks, 2009). The pro-oncogenic
effects of overexpressed constitutively activating mutations
in GPCRs (O’Hayre et al., 2013; Moore et al., 2016; Wright
et al., 2019; DiGiacomo et al., 2020) and Ga subunit (Van
Raamsdonk et al., 2009, 2010; Wu et al., 2011; Nairismagi
et al., 2016; Ideno et al., 2018 ;DiGiacomo et al., 2020)
have led to enhanced downstream signaling in reported
cancer studies. Cancer-derived activated mutations in Gao
can induce oncogenic transformation (Garcia-Marcos et al.,
2011), while inactivated mutations in Gai/o-receptors can
lead to enhanced cAMP activity (Chaudhary and Kim,
2021). These studies suggest that the loss of Gabinding
and GAP function in RGS proteins can promote oncogenic
activity.
Multiple sequence-based analytical tools provide informa-

tion and predictions about evolutionary conserved areas of a
protein that are vital for structure and function (Nobrega
and Pennacchio, 2004). Interestingly, sequence-based tools,
like missense tolerance ratio (1DMTR) (Traynelis et al.,
2017) and SIFT, access the same genetic variant databases
to run their algorithms but interpret the predictive effect of a
mutation in different ways. Recently, a novel tool known as
three-dimensional missense tolerance ratio (3DMTR) permu-
tation analysis (Perszyk et al., 2021) has been developed but
not yet widely tested. The improved 3DMTR algorithm calcu-
lates the missense tolerance ratio for the neighboring residues
in three-dimensional (3D) distance from protein crystallogra-
phy or cryo-EM data.
RGS proteins are divided in subfamilies based on sequence

homology and other shared domains (Hepler, 1999; Willars,
2006; Sjogren and Neubig, 2010; Stewart and Fisher, 2015).
Here we analyzed the RGS domains of 15 RGS proteins with
reported structures and focused on assessing three RGS pro-
teins in particular: RGS14, RGS10, and RGS4. RGS14 and
RGS10 are members of the D/R12 family. RGS14 is a complex
multidomain signaling molecule selective for Gai/o (Cho et al.,
2000; Vellano et al., 2011) and is highly expressed in brain re-
gions essential for learning and memory (Harbin et al., 2021).
RGS10 is a smaller molecule that selectively binds Gai/o mem-
bers (Hunt et al., 1996; Watson et al., 1996; Popov et al., 1997).
In contrast to RGS14, RGS10 is broadly expressed making it
an essential regulator of physiologic processes including in-
flammatory responses and survival signaling (Alqinyah et al.,
2018). Much smaller than RGS14, RGS4 is part of the R4 sub-
family and is highly expressed in brain where it has been
linked to psychiatric disorders (Terzi et al., 2009; Schwarz,
2018), and in opioid reward and addiction (Sakloth et al.,
2020). RGS4 is selective for Gai/o and Gaq members (Hepler
et al., 1997; Tesmer et al., 1997), preferring signaling by Gai/o
over Gaq in a neuronal model (Masuho et al., 2020).

In the present study, we carry out a functional assessment
of the predictive capabilities of the novel 3DMTR applied to
RGS proteins. We combine this with available somatic muta-
tional information found in cancer samples to determine the
effect these genetic variants will have on RGS14/10/4 protein
structure and function. We test how cancer mutations in sig-
nificant regions of the protein can lead to changes in RGS
function assessed by various cell based and biochemical
assays.

Materials and Methods
Three-Dimensional Missense Tolerance with Permutation

Analysis. The 3DMTR permutation analysis was performed as
described (Perszyk et al., 2021). To perform 3DMTR analysis on RGS
protein structures, the encapsulated application MATLAB (Math-
works, version R2019b) available on GitHub (https://github.com/
riley-perszyk-PhD/3DMTR, current version v2.000) was used. The
protein structures of the analyzed RGS proteins were obtained from
the Protein Data Bank (rcbs.org). Reference of all the crystal struc-
tures used is available in Supplemental Table 1. Variant datasets of
all RGS genes were downloaded from the Genome Aggregation Data-
base (gnomAD) website (https://gnomad.broadinstitute.org/, version
2.1.1). The translated coding gene sequences of RGS proteins were used
(RGS1, NM_002922.4; RGS2, NM_002923.4; RGS3, NM_144488.6; RGS4,
NM_001102445.2; RGS5, NM_003617.4; RGS6, NM_001204416.3; RGS7,
NM_001282773.2; RGS8, NM_033345.3; RGS9, NM_001081955.3;
RGS10, NM_001005339.2; RGS12, NM_002926.3; RGS14, NM_006480.5;
RGS16, NM_002928.4; RGS17, NM_012419.5; RGS18, NM_130782.3).
The closest 21 residues were used in the 3DMTR calculations since
the RGS protein domain structures are small (�120 residues) to pro-
vide more stratified scores. Permutation analysis was preformed using
1000 iterations by randomizing the residue location. Permutation sig-
nificance was determined where the 3DMTR score was outside the
2xSTD range (permutation standard deviation of each residue) calcu-
lated from the permutation mean score for each residue. We define
the residues that are identified with permutation analysis as either
significantly intolerant or significantly tolerant depending on which
tail of the permutation distribution they fall within. Additionally, hav-
ing an MTR score of <0.5 is very rare (the fifth percentile score for the
1DMTR is 0.5462; http://mtr-viewer.mdhs.unimelb.edu.au/). Previous
work suggests that the 3DMTR and the 1DMTR generally produce a
similar set of MTR scores, albeit the scores are rearranged based on
the different selection criteria, so we believe this cut off is also appro-
priate for the 3DMTR scores. Thus, we deem the residues with
3DMTR scores #0.5 as being important and will call highly
intolerant.

Cell Culture and Reagents. Human embryonic kidney (HEK)
293 cells were cultured in 1X Dulbecco’s modified Eagle’s medium
(DMEM), without phenol red indicator, supplemented with 10% fetal
bovine serum (FBS), 2mmol/l L-glutamine, 100 units/ml penicillin,
and 100 mg/ml streptomycin. HEK cells were kept in a humidifier
incubator with 5% CO2 at 37�C. Trypsin-EDTA 0.25% was used dur-
ing cell culture procedures. Cells were seeded 8x105 in 2 ml of trans-
fection medium per well in six-well plates. Transfection media was
formulated with 5% FBS in DMEM phenol-red free media and poly-
ethyleneimine (PEI) was the transfection agent used.

The hemagglutinin (HA) epitope-tagged a2a-adrenergic receptor
(HA-a2a-AR) construct was kindly provided by Dr. Joe Blumer (Medi-
cal University of South Carolina). The G protein used in our studies
were Glu-Glu tagged Gao (Gao-EE) and the pertussis-resistant mutant
C351G of Gao (Gao-CG) which was purchased from the cDNA Resource
Center (cDNA.org, Bloomsberg, PA). Mas-GRK3ct-Luc and Ven-Gbc
were described previously (Hollins et al., 2009). Human Flag-tagged
RGS14 [Flag-RGS14 wild-type (WT)], human Flag-RGS14-S127P, hu-
man Flag-RGS14-D137Y, human Flag-RGS14-R173C, human Flag-
RGS14-R173H, human Flag-tagged RGS10 wild-type (Flag-RGS10
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WT), human Flag-RGS10-S64T, human Flag-RGS-K89M, hemaggluti-
nin epitope-tagged rat RGS4 wild-type (HA-RGS4 WT), rat HA-RGS4-
K125Q, rat HA-RGS4-E126K, and rat HA-RGS4-E135K were gener-
ated as previously described (Bernstein et al., 2004; Shu et al., 2007).
Pertussis toxin #181 was purchased from List Biologic Laboratories,
Inc (Campbell, CA). UK 14,304 was obtained from Sigma-Aldrich
(U104; St. Louis, MO). Forskolin was obtained from Sigma-Aldrich
(F6886; St. Louis, MO).

Kinetic Bioluminescence Resonance Energy Transfer. Ki-
netic bioluminescence resonance energy transfer (BRET) experiments
were performed as previously described (Lambert et al., 2010; Brown
et al., 2016). After a 48-hour transfection, cells were resuspended in
Tyrode’s solution (140 mmol/l NaCl, 5 mmol/l KCl, 1 mmol/l MgCl2,
1 mmol/l CaCl2, 0.37 mmol/l NaH2PO4, 24 mmol/l NaHCO3, 10 mmol/l
HEPES, and 0.1% glucose, pH 7.4) and plated on white 96-well Opti-
plates (Perkin Elmer Life Sciences, Waltham, MA). Fluorescence
measurements were made using the TriStar LB 941 plate reader
(Berthold Technologies, Bad Wildbad, Germany) with 485-nm excita-
tion and 530-nm emission filters to confirm acceptor expression. After
a 10-minute application of 5 lmol/l coelenterazine H (Nanolight Tech-
nologies, Pinetop, AZ), in vivo kinetic BRET was recorded using se-
quential measurements through 485- and 530-nm emission filters.
BRET was recorded for 30 seconds with no stimulation to establish
basal BRET. After 30 seconds of basal BRET recording, a2A-adrener-
gic receptor agonist UK 14,304 (100 lM) was injected into the cells.
The presence of the agonist induces Ga protein activation and the
change in BRET is calculated by dividing the mas-GRK3ct-Luc signal
(530 nm) by the Ven-Gbc signal (485 nm) and subtracting the average
BRET signal observed from the first 30 seconds of observation (basal
BRET). With each experiment, a kinetic BRET control was performed
using pertussis insensitive Gao. Pertussis toxin was added to the
transfection media to all wells. Any BRET signal recorded in the con-
trol wells transfected with pertussis sensitive Gao was regarded as
noise and subtracted from experimental kinetic BRET recordings.
Data were collected using the MikroWin 2010 software (Mikrotek La-
borsysteme GmbH, Overath, Germany) and analyzed using Microsoft
Excel and GraphPad Prism 9.

Coimmunoprecipitation of RGS and Gao. After a 24-hour
transfection, HEK cells were washed three times with cold 1X PBS.
Cells were scraped into AMF lysis buffer (50 mM Tris, 150 mM NaCl,
1 mM EDTA, 2 mM DTT, 10 mM NaF, 14 mM MgCl2, 10 mM AlCl3,
1X Roche protease inhibitor, 1X Halt phosphatase inhibitor) and lysed
at 4�C for 1 hour while rotating end-over-end. Lysates were cleared by
centrifuging at 13000 RPM for 10 minutes at 4�C. For each condition,
50 ll of affinity gel beads was used. Anti-FLAG M2 affinity gel (Sigma
A2220) was used to immunoprecipitated Flag-RGS14 and Flag-
RGS10, while monoclonal anti-HA agarose beads (Sigma A2095) was
used for HA-RGS4 immunoprecipitations. Affinity gel beads were
washed three times with cold 1X PBS and then blocked with 4% BSA
in PBS at 4�C for 1 hour while rotating end-over-end. Cleared cell
lysate was collected for input, and the remaining lysate was added to
blocked anti-FLAG M2 affinity beads or anti-HA agarose beads. Im-
munoprecipitation of Flag-tagged RGS from lysate was performed at
4�C for 2 hours while rotating end-over-end, while HA-tagged RGS
was performed overnight. After immunoprecipitation, the beads-RGS
complex was washed three times with cold 0.1% Tween-20 in PBS. In-
put and immunoprecipitated samples were denatured by boiling in
Laemmli buffer for 5 minutes.

Analysis of Immunoblots. Denatured cell lysate samples in
Laemmli Buffer were resolved on 13.5% SDS-PAGE, and samples
were then transferred to nitrocellulose membranes. Membranes were
blocked in 5% non-fat milk for 1 hour at room temperature. For FLAG-
tagged RGS (RGS10 WT and mutants, or RGS14 WT and mutants.),
HRP-conjugated anti-FLAG antibody (Sigma A8592, 1:15,000) was
diluted in TBS/T and incubated with the membranes for 45 minutes at
room temperature. For HA-tagged RGS4 and mutants, Anti-HA-
Peroxidase rat monoclonal antibody (Roche Cat# 12013819001, 1:5000)
diluted in TBS/T was used. For Gao, anti-EE (Covance MMS-115R,

1:1000) was diluted in 5% non-fat milk and incubated with membranes
overnight at 4�C. HRP-conjugated goat anti-mouse IgG secondary anti-
body (Jackson ImmunoResearch 115-035-003, 1:5000) was diluted in
TBS/T and incubated with membranes for 45 minutes at room temper-
ature. Blots were developed using ECL and imaged using the Chemi-
Doc MP Imaging system (BioRad).

GloSensor cAMP Assay. To measure intracellular cAMP levels,
we used the GloSensor cAMP assay. The cAMP GloSensor was ob-
tained from Promega and the assay was performed following the
manufacturer’s instructions (Promega, Madison, WI, USA). HEK293
cells were harvested (15,000 cells per individual well) in tissue cul-
ture-treated 96-well flat bottom plate. Cells were kept in 37�C tissue
culture incubator 5%–10% CO2 overnight. Cells were transfected
with 50ng of pGloSensor-20F cAMP, 50ng a2-AR, 50ng RGS of inter-
est, and pcDNA in DMEM serum free media. After 24 hours, the me-
dia is removed without disrupting the cell monolayer and 100 ll of
the equilibrium medium is added (2% v/v dilution of the GloSensor
cAMP Reagent stock solution). Incubation with the equilibration re-
agent is done for 2 hours and cells are kept in 37�C tissue culture in-
cubator 5%–10% CO2 in the dark. After 2 hours, basal luminescence
intensity was measured at 0 and at 5 minutes using a luminometer
(FLUOstar) in triplicates. To measure a2-AR-Gai/o directed inhibi-
tion of cAMP, cells are preincubated with 100 ll of 100 lM UK14,304
(agonist) or DMSO (vehicle) in HBSS for 10 minutes at room temper-
ature following basal readings. At 10 minutes, cAMP production is
stimulated by adding 10 lM forskolin and luminescence is measured
every 5 minutes for a total of 50 minutes. The data in relative light
units (RLU) from triplicates wells were averaged and a response
over time graph is generated. Normalization was done by dividing
each time point following forskolin stimulation over basal lumines-
cence, then each time point is divided by empty vector (50ng pcDNA
alone) control. Area under the curve for each condition is calculated
and the effect of the mutants is compared with the WT RGS effect in
Gai/o-coupled a2-AR stimulation of cAMP.

Data Analysis and Statistics. Data analysis was conducted us-
ing Microsoft Excel and GraphPad Prism 9 software. Kinetic BRET
activation curves were presented as a mean of three or four experi-
mental replicates. We then selected the maximum BRET amplitude at
100 seconds for each condition. Maximum BRET amplitude columns
were compared by performing a statistical analysis using one-way
analysis of variance (ANOVA) with Dunnett’s test. Luminescence-
based cAMP GloSensor assay relative light units (RLU) were recorded
from averaged replicate wells and plotted as response over time, with
a total of 4 experimental replicates. We then analyzed the area under
the curve (AUC) for each condition and columns were statistically ana-
lyzed using one-way analysis of variance (ANOVA) with Dunnett’s
test.

Results
3DMTR Predicts Amino Acid Residues in RGS Pro-

teins Likely To Be Intolerant to Mutation. RGS pro-
teins share an evolutionary conserved �120 amino acid RGS
domain that binds activated G protein alpha subunits to act
as GAPs. In this study, we examined the canonical human
RGS proteins using a bioinformatic tool that evaluates the
degree of variation that exists in the gnomAD database (large
database of human whole exomes and genomes of healthy
individuals) and determines a composite score, missense tol-
erance ratio (MTR) (Traynelis et al., 2017). This MTR score
is determined based on the location of the linear polypeptide
chain (1DMTR; Traynelis et al., 2017). A newly described bio-
informatics tool expands on this idea to measures MTR based
on the location of each residue in three-dimensional (3D)
space (3DMTR;-Perszyk et al., 2021-) based on reported pro-
tein crystallography or cryo-EM data. This 3DMTR is a more
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accurate and improved bioinformatic tool that also
utilizes a permutation analysis to calculate the relative sig-
nificance of the missense tolerance ratio of a given dataset
(Perszyk et al., 2021). Both 1DMTR and 3DMTR use avail-
able human variation data from neighboring residues to re-
port population level genetic variation and measures the
tolerance ratio within the entire genome.
A comparison of the 1DMTR and the 3DMTR analysis for

the RGS domain of one representative RGS protein, RGS14,
is shown as scatter plots in Fig. 1, A and C. In a previous re-
port (Squires et al., 2021), we described in detail the 1DMTR
results for RGS proteins. Considering the RGS domain of
RGS14 (Fig. 1A), the 1DMTR analysis of the RGS domain
generally shows more tolerant scores (0/134 residues have
1DMTR scores #0.5), which are shown as red shades super-
imposed onto the RGS domain structure (Fig. 1B). Structural
data has been reported for the RGS domain of most RGS pro-
teins, including RGS14 (Soundararajan et al., 2008). Using
this information, we analyzed the RGS domains of 15 of
20 RGS protein family members, including RGS14, using the

3DMTR analysis (Supplemental Fig. 1) as will be discussed
further below. In contrast to 1DMTR, the 3DMTR uses the
same human variation data but instead utilizing the neigh-
boring residues in 3D space, which should be functionally
more relevant to determine the tolerance ratio.
We analyzed the RGS domain of RGS14 by 3DMTR (Fig. 1, C

and D). Because the size of RGS domains (�120 aa) are much
smaller than the entire RGS proteins (�200–1400 aa), the
3DMTR was calculated using the nearest 21 residues instead of
the 31-residue window that has been used for larger proteins.
Based on this, the 3DMTR may be a more accurate predictor of
highly intolerant residues compared with the 1DMTR. We will
refer to the residues that appear to have selective pressure con-
trolling their variation as ‘highly intolerant’ (3DMTR score of
#0.5). The 3DMTR analysis of the RGS domain of RGS14 identi-
fied several residues with highly intolerant scores (7/134 residues
have 3DMTR scores #0.5, Fig. 1C), shown in blue shades super-
imposed onto the RGS domain structure (Fig. 1D). Furthermore,
we used permutation analysis that determines which residue
scores are highly unlikely given a specific dataset (occurring in

A

C

E

B

D

F

Fig. 1. Comparison of RGS14 1DMTR and 3DMTR permutation analysis. (A) The sequential MTR score of RGS14 (31 residue smoothing window)
is calculated using gnomAD-derived human variants and is shown as a scatter plot. (B) Structural view of RGS domain of RGS14 colored to show
a heatmap of the 1DMTR score (intolerant residues in blue, neutral in white, tolerant in red). (C) The MTR score of RGS14 taking into consider-
ation three-dimensional space (3DMTR; using the closest 21 residues). Green squares represent a synonymous variant in that residue. Orange
squares represent missense variant for the residue. Below is a linear heatmap of the MTR score for RGS14. (D) Structural view of RGS14
3DMTR raster plot scores. (E) Scatter plot of RGS14 3DMTR score (magenta line), permutation analysis score mean (black line), and 2× standard
deviation around the permutation score mean of the permutation analysis (gray areas). (F) Structural view of the permutation analysis raster
plot significantly intolerant residues within RGS14.
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less than 5% of random permutations). It can be interpreted
that the residues identified by permutation analysis that are ei-
ther significantly intolerant or significantly tolerant, i.e., those
that would be unexpected within each analyzed dataset (consist-
ing of the gene sequence, protein structure, and gnomAD
dataset). Primarily of note, the analysis suggests that the signifi-
cantly intolerant residues may relatively (compared with the
rest of the residues in the protein) have selective pressures that
limit variation in these regions. The permutation analysis of
RGS14 (Fig. 1E) identified 14 residues that were significantly in-
tolerant, whereas 3.4 would have been expected randomly given
the dataset (based on the expected frequencies of a single tail of
a normal distribution using a equal to 0.05, therefor 0.025 * 134
residues). Comparing the 1DMTR and 3DMTR data for RGS14,
the 3DMTR analysis of the RGS domain of RGS14 predicts
highly intolerant residues not found with the 1DMTR (0 with
1DMTR versus 7 with 3DMTR, total residues 134, Fisher’s exact
test P 5 0.0144). The permutation analysis of RGS14 (Fig. 1E)
identified 14 residues significantly intolerant, seven residues
highly intolerant (3DMTR score #0.5) and seven tolerant (not
highly intolerant) (3DMTR score >0.5). The significantly intoler-
ant residues are visualized in blue on the structure of the RGS
domain of RGS14 (Fig. 1F).
Next, each RGS domain of all available structures for RGS

protein family members were analyzed using 3DMTR (Fig. 2;
Supplemental Fig. 1). For this analysis, we used the reported
structures of RGS protein domains that are available for
15 of the 20 RGS proteins (Supplemental Fig. 1). Interestingly,
each RGS domain presented a distinct “bar code” of signifi-
cantly intolerant and significantly tolerant residues (Fig. 2;
Supplemental Fig. 1). A second 3DMTR analysis was per-
formed on four RGS protein domains in complex with active
forms of their Ga partners (Supplemental Fig. 2: RGS1-Gai1,
RGS4-Gai1, RGS10-Gai3 and RGS16-Gai1). In each of these
cases, the profiles for significantly tolerant and intolerant resi-
dues differed slightly by active Ga binding.
We next compared the 3DMTR results for RGS14, RGS10

and RGS4. These three RGS proteins were chosen because of
their involvement with various cancers and their differences
in size and structure. Raster plots for RGS14 (Fig. 2A),
RGS10 (Fig. 2B), and RGS4 (Fig. 2C) show the comparison of
1DMTR data with 3DMTR data calculated using the nearest
21 or 31 residues, as before. For each, tolerant (red) or signifi-
cantly intolerant (blue) residues are shown (c21-sig). The
3DMTR analysis predicts intolerant residues not found with
the 1DMTR analysis. As observed with the other RGS pro-
teins (Supplemental Fig. 1), the RGS domains of RGS14,
RGS10, and RGS4, each presented a distinct “bar code” of
significantly intolerant residues (Fig. 2; Supplemental Figs. 1
and 2).
As was the case for RGS14 (Figs. 1 and 2A), 3DMTR pre-

dicted for RGS10 more highly intolerant scores than 1DMTR
(Fig. 2B) (1 with 1DMTR versus 7 with 3DMTR, total residues
136, Fisher’s exact test P 5 0.0663) and for RGS4 (Fig. 2C)
(1 with 1DMTR versus 6 with 3DMTR, total residues 128,
Fisher’s exact test P 5 0.1199). The structure of each of the
RGS domains is shown with significantly tolerant and intoler-
ant residues highlighted in red and blue, respectively (Fig. 2,
D–I). Each is shown bound to the reported structure of Gai1
(Fig. 2, D and F), Gai3 (Fig. 2E), or alone (Fig. 2, G–I). Com-
parison of the three RGS domain structures in the same orien-
tation with the intolerant residues highlighted in blue (Fig. 2,

G–I), shows that these residues are distributed differently
within the domain structure. We next performed permutation
analysis for the RGS domains of RGS10 and RGS4
(Supplemental Fig. 3) and compared those to RGS14 (Fig. 1E).
The amino acid sequence for each of these RGS proteins

are aligned (Fig. 2J). The RGS domain is highlighted in lilac,
in gray are the residues that directly interact with Ga, and
in orange the residues that are in the hydrophobic core
(Tesmer et al., 1997). The significant residues identified by
the permutation analysis are identified with symbol under
each residue letter, * for the identified residues that were
also highly intolerant (MTR # 0.5) and � for identified resi-
dues that were not highly intolerant residues (MTR >0.5). As
shown in Fig. 2J, the profiles of intolerant residues differ
across each protein. 3DMTR identified highly intolerant resi-
dues found in the RGS hydrophobic core were residue F81 in
RGS14, and I93 and F97 in RGS10. 3DMTR identified highly
tolerant residues in RGS4 F91, W92 and I114 are also found
in the hydrophobic core. Intolerant residues in the direct con-
tact with G alpha in RGS14 are N93 and R173, and tolerant
residues are RGS14-D137 and RGS4 E87 and N88. Com-
pared with the permutation analysis for RGS14 (Fig. 1E), the
same analysis of RGS4 identified 15 significantly intolerant
residues, whereas 3.2 would have been expect randomly
given the 128-residue dataset. The permutation analysis of
RGS10 identified five residues that were significantly intoler-
ant, whereas 3.4 would have been expected randomly given
the 136-residue dataset.
We next focused on the significantly intolerant or tolerant

residues in RGS14, RGS10 and RGS4 identified by the
3DMTR analysis that overlap with reported somatic patho-
genic mutations found in patient cancer samples identified in
the Catalogue of Somatic Mutations in Cancer (COSMIC) da-
tabase (Table 1). Using various in vitro assays of RGS-G pro-
tein interaction and signaling, we test the effect of an amino
acid change, due to cancer mutations, in the selected signifi-
cant residues and how these affect canonical RGS function.
Reported Pathogenic Somatic Mutations in RGS14,

RGS10, and RGS4 That Overlap with Residues Identified
by 3DMTR To Be Significantly Intolerant to Mutation.
Several bioinformatics tools (discussed below) that estimate
the pathogenic potential of reported human somatic muta-
tions are publicly available. Cells can develop somatic muta-
tions due to imperfect replication or exposure to endogenous
and exogenous mutagens (Olafsson and Anderson, 2021).
Most somatic mutations will have little or no phenotypic ef-
fect, whereas a small minority of mutations can affect protein
function and cell physiology leading to the progress of com-
plex diseases (Olafsson and Anderson, 2021). These muta-
tions occur postzygotically and exist in a subpopulation
of cells (Dou et al., 2018). Online databases like COSMIC
(cancer.sanger.ac.uk/cosmic) report somatic mutations found
in human cancers. COSMIC uses a FATHMM-MKL algo-
rithm to predict the functional, molecular and phenotypic
consequences of proteins missense variants using Markov
models classifying the mutations as pathogenic (scores $ 0.7)
or neutral (#0.5) (Shihab et al., 2015; Tate et al., 2019). Us-
ing these tools, we identified somatic mutations that overlap
with residues in the RGS domain of RGS14, RGS10 and
RGS4 identified by the 3DMTR to be either more sensitive or
less sensitive to mutations (Supplemental Tables 2–4).
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RGS14 has been reported to be highly expressed in liver
cancer and glioma (Uhlen et al., 2017). The analysis of The
Cancer Genome Atlas (TCGA) and Gene Expression Omnius
(GEO) datasets have identified RGS14 as one of the five-gene
signature biomarkers for Glioblastoma for Glioblastoma

multiforme (GBM) (Yin et al., 2019). Somatic mutations in
RGS14 that overlap with residues predicted to be highly toler-
ant or intolerant by the 3DMTR are shown in Supplemental
Table 2. Mutations found in RGS14 of patient samples with
large intestine carcinoma include R173C, R173H, and S170R.

Fig. 2. The 3DMTR permutation analysis identifies significantly intolerant residues within the RGS domain that were not identified by 1DMTR.
(A–C) Raster plot of selected RGS proteins comparing 1DMTR, 3DMTR based on the 31 neighboring residues, 3DMTR based on the 21 neighboring res-
idues, and significantly intolerant residues based on the permutation analysis (rows labeled “c21-sig.”, labeled by a blue rectangle). (D–F) Structural
views of RGS domains colored to show a heatmap of the 21-residue 3DMTR score (intolerant residues in blue, neutral in white, tolerant in red) bound
to G alpha. (G–I) Structural view of the 21-residue 3DMTR permutation analysis raster plot significantly tolerant/intolerant residues. (J) RGS protein
alignment shows the RGS domain (lilac), residues in the hydrophobic core (yellow), residues in direct contact with G alpha (gray), and selected residues
to test the functional consequences inside box. The residues with a 3DMTR score >0.5 are determined to be not highly intolerant (tolerant) and the
color letter is red. Residues with a 3DMTR score #0.5 are determined to be highly intolerant and the color letter is blue. Residues identified via the
permutation analysis are identified with symbols * (MTR # 0.5, highly intolerant) or � (MTR > 0.5, not highly tolerant).

26 Monta~nez-Miranda et al.

http://mol.aspetjournals.org/lookup/suppl/doi:10.1124/molpharm.122.000614/-/DC1
http://mol.aspetjournals.org/lookup/suppl/doi:10.1124/molpharm.122.000614/-/DC1


RGS14 somatic mutation S127P is found in gastroesophageal
junction carcinoma, and D137Y is found in prostate carci-
noma. Of note, coding silent mutations in RGS14 and other
RGS proteins are also reported that overlap with the residues
identified by 3DMTR permutation analysis (significantly
intolerant residues). For RGS14 these are residues N93, A99
and R173, and are included because the COSMIC
FATHMM-MKL algorithm surprisingly and inexplicably des-
ignated some of these silent mutations to be pathogenic. Resi-
dues in RGS14 scored by the 3DMTR permutation analysis
(>0.05) and overlap with somatic mutations considered patho-
genic by the COSMIC algorithm are S127P and D137Y. Resi-
dues scored by the 3DMTR permutation analysis (#0.05,
significantly intolerant residues) and predicted to be patho-
genic are S170R, R173C, R173H, and coding silent R173.
RGS10 has been reported to be highly expressed in renal,

endometrial, and cervical cancer (Uhlen et al., 2017). This
ubiquitously express protein regulates physiology and signal-
ing pathways in microglia, macrophages, T-lymphocytes,
neurons, osteoclasts, cardiomyocytes, platelets, and cancer
cells. It has been identified as an important regulator of cell
survival and chemoresistance (Hooks et al., 2010; Cacan
et al., 2014) and transcript expression is significantly sup-
pressed in multiple ovarian cancer cell lines (Ali et al., 2013;
Cacan et al., 2014). Moreover RGS10 acts as a tumor sup-
pressor by blunting endogenous survival pathways (Cacan
et al., 2014), and has been reported to regulate inflammatory
signaling pathways in ovarian cancer cell survival (Alqinyah
et al., 2018). Somatic mutations in RGS10 that overlap with
residues deemed to be highly tolerant or intolerant by the
3DMTR are shown in Supplemental Table 3. Mutations
found in RGS10 of patient samples with lung carcinoma are
S64T and coding silent A73, while K89M can be found in thy-
roid carcinoma samples.
Studies have shown association between RGS4 and

enhanced cell viability, invasion and motility in thyroid
cancer (Nikolova et al., 2008), glioma (Tatenhorst et al., 2004;
Weiler et al., 2013), ovarian cancer (Puiffe et al., 2007), and
triple negative breast cancer (Xie et al., 2009). Somatic muta-
tions in RGS4 that coincide with 3DMTR permutation analy-
sis identified significant residues (Supplemental Table 4) are

found in carcinoma samples of the following tissues: large in-
testine E87D, thyroid I89N, kidney W92C, endometrium
K113N, breast Q122H and A123E, stomach A123T, and lung
K125Q. Overlapping mutants were also found in melanoma
including E126K, E135K, and silent coding F118 and V127 in
RGS4.
Based on these findings, we chose to study selected somatic

mutations in RGS14, RGS10 and RGS4 that overlap with resi-
dues identified by 3DMTR to be either tolerant or intolerant to
mutation. Our goal for these studies was to test how well
3DMTR and other bioinformatic tools predict important resi-
dues for protein function and pathogenic potential. These spe-
cific residues and somatic mutations chosen for further study
are listed in Table 1. Mutations in RGS14 selected for study
were S127P, D137Y, R173C, and R173H (Fig. 3). Mutations in
RGS10 selected for further study are amino acid mutation
S64T and K89M (Fig. 4). Mutations in RGS4 chosen for further
study were K125Q, E126K, and E135K (Fig. 5).
Assessment of Somatic Mutations in 3DMTR-Identi-

fied Tolerant and Intolerant Residues in GPCR/G
Protein Activation and G Protein Binding. RGS14 is a
member of the D/R12 subfamily and contains an RGS domain
as well as accessory domains that play a role in different sig-
naling pathways such as the tandem Ras/Rap-binding do-
mains (R1 and R2), a G protein regulatory (GPR) motif, and
a C-terminal PDZ binding motif (Cho et al., 2000; Traver
et al., 2000; Hollinger et al., 2001; Hollinger and Hepler,
2002; Shu et al., 2007; Vellano et al., 2013; Zhao et al., 2013;
Friedman et al., 2022). We first examined the effects of muta-
tional changes in 3DMTR-defined tolerant and intolerant res-
idues on RGS14 functions (Fig. 3). For these and subsequent
studies (Figs. 4 and 5), we used a live cell biosensor (BRET)
assay to measure RGS effects on GPCR/G protein activation
(Brown et al., 2016). HEK293 cells were transfected with
A2A-adrenergic receptor (A2AR), GAo, Gb1-venus, Gg2-venus,
and the biosensor for Gbg binding mas-GRK3ct-Luc, as pre-
viously reported (Brown et al., 2016). Upon addition of A2AR
agonist UK 14,304 (100mM), GPCR signaling is activated
leading to the dissociation of GA and Gbg-venus. The Gbg-
venus binds to the mas-GRK3ct-Luc biosensor resulting in

TABLE 1
Tolerant and intolerant residues from RGS domains of interest that also overlap with highly deleterious somatic mutations were selected for assessment
of their impact on RGS functions. Amino acids reported in the COSMIC cancer database were selected based on the criteria that were predicted to be
pathogenic by the FATHMM score to be highly pathogenic. Scores above 0.5 are deleterious; scores $0.7 are classified as pathogenic.

Pathogenic Score Cancer Type 3DMTR (Score)

RGS14
S127P 0.91 Stomach Carcinoma Tolerant (1.03)
D137Y 0.97 Prostate Carcinoma Tolerant (0.93)
R173C 0.81 Large Intestine Carcinoma Intolerant (0.50)
R173H 0.97 Large Intestine Carcinoma Intolerant (0.50)

RGS10
S64T 0.96 Lung Carcinoma Tolerant (0.91)
K89M 0.84 Thyroid Carcinoma Intolerant (0.48)

RGS4
K125Q 0.97 Lung Adenocarcinoma Intolerant (0.48)
E126K 1.00 Skin Melanoma Intolerant (0.42)
E135K 1.00 Skin Carcinoma, Melanoma, Upper

Aerodigestive Tract Carcinoma
Tolerant (1.14)
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Fig. 3. Assessment of functional impact of RGS14 somatic mutations on GPCR-G protein activation and G protein binding. (A) Schematic representa-
tion of kinetic BRET experiments. HEK 293 cells were transfected with 200 ng of a2A-AR, 200 ng of Venus-Gb1 200 ng of Venus-Gc2, 200ng of mas-
GRK3ct-Luc, 1000 ng of mutant Gao (PTX insensitive), and 0 or 200ng of WT Flag-RGS or 200ng of Flag tagged RGS mutant. (B) Structural view of
selected mutated tolerant (red) and intolerant (blue) residues in RGS14. Average whole traces of BRET signal over time (n 5 3) are shown comparing
WT and somatic mutations. 3DMTR identified residues that led to loss of function are tolerant residues Flag-S127P (C), and intolerant mutated resi-
dues Flag-R173C (G) and Flag-R173H (I). Tolerant residue Flag-D137Y (E) did not lead to change of function. BRET amplitude observed at 100s was
compared between 0ng RGS14, 200ng WT RGS14, and mutants Flag-S127P (D), Flag-D137Y (F), Flag-R173C (H), and Flag-R173H (J). Error bars rep-
resent mean ± S.D. Statistical analysis was performed using one-way ANOVA with Dunnett’s test (**P < 0.005). (K) Coimmunoprecipitation studies
show that RGS14 mutants S127P, R173C and R173H blocked binding to Gao-AlF4.
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an increase in BRET signal (Hollins et al., 2009). Using this
model (Fig. 3A) we can test the effects of RGS mutants in A2-
adrenergic receptor-GAo protein activation.
RGS4, RGS10 and RGS14 each bind to active Gai/o protein

family members including GAo1, GAo2, GAi1, GAi2, and GAi3
(Masuho et al., 2020). Of these, Gao is the most indiscrimi-
nate G alpha protein, is regulated by all canonical RGS pro-
teins (Masuho et al., 2020), and its highly expressed in the
brain where it couples A2AR (Nobles et al., 2005; Goldenstein
et al., 2009). Our previous studies compared A2AR G protein
activation with GAo and GAi1, and GAo provided a much
more robust maximum BRET amplitude signal (Brown et al.,
2016). For these reasons, we employed a live cell A2AR-GAo
model to test the effects of RGS protein mutants in G protein
activation.
Using the above assay, we examined the effects of selected

somatic mutations on RGS14 capacity to regulate receptor-G
activation (Fig. 3). Four mutations were tested including two
that were scored by 3DMTR-permutation analysis as tolerant
(S127P and D137Y) (Fig. 3, C–F) and two as intolerant
(R173C and R173H) (Fig. 3, G–J). Wild-type RGS14 and
mutant proteins expressed well in HEK 293 cells (Supp-

lemental Fig. 4A). The relative position of these residues
within the RGS domain structure are shown in Fig. 3B
highlighted as either red (tolerant) and blue (intolerant). As
shown in Fig. 3, C–F, somatic mutations within the tolerant
residues exhibited distinct phenotypes. Whereas mutant
D137Y behaved as expected (i.e., like wild-type RGS14) to
inhibit agonist activation of A2AR-GAo (Fig. 3, E and F),
mutant S127P exhibited a loss-of-function (LoF) phenotype
(Fig. 3, C and D). In examining the two somatic mutations
found in intolerant residue R173 of RGS14, both R173C (Fig.
3, G and H) and R173H (Fig. 3, I and J) behaved as expected
with both mutations exhibiting a LoF phenotype. In parallel,
we assessed direct binding of each RGS14 mutation with ac-
tive GAo as measured by affinity capture by immunoprecipita-
tion from HEK293 cell lysates treated with AlF4

-/Mg11 (AMF)
to activate cellular G proteins including of GAo (Fig. 3K). We
observed that the direct binding properties of the mutants
mirrored that for RGS regulation of A2AR-GAo activation.
Specifically, mutant D137Y bound active GAo, whereas mu-
tants S127P, R173H and R173P all failed to bind GAo
(Fig. 3K). In summary, three of the four somatic mutations

Fig. 4. Assessment of functional impact of RGS10 somatic mutations on GPCR-G protein activation and G protein binding. (A) Structural view of
selected mutated tolerant (red) and intolerant (blue) residues in RGS10. (B) Coimmunoprecipitation studies show that mutants K89M bound to
Gao-AlF4- while S64T blocked binding. Average whole traces of BRET signal over time (n 5 3) are shown comparing WT and 3DMTR somatic
mutations in identified tolerant residue Flag-S64T (C) and intolerant residues Flag-K89M (E). BRET amplitude observed from data presented for
Flag-S64T (D) and Flag-K89M comparison (F). Tolerant residue Flag-S64T (C–D) led to change of function while intolerant Flag-K89M (E–F) did
not change. Error bars represent mean ± S.D. Statistical analysis was performed using one-way ANOVA with Dunnett’s test (**P < 0.005).
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Fig. 5. Assessment of functional impact of RGS4 somatic mutations on GPCR-G protein activation and G protein binding. (A) Structural view of selected
mutated tolerant (red) and intolerant (blue) residues in RGS4. (B) Coimmunoprecipitation studies show that RGS4 WT, K125Q and E135K mutants bound
Gao-AlF4-. Average whole traces of BRET signal over time (n 5 3) are shown comparing WT and 3DMTR identified tolerant and intolerant residues HA-
K125Q (C), HA-E126K (E) and HA-E135K (F). BRET amplitude at 100s observed from data presented for HA-K125Q (D), HA-E126K (F) and HA-E135K
(G) comparison. Intolerant mutants HA-K125Q (C–D), HA-E126K (E–F) led to loss of function phenotypes while tolerant HA-E135K (G–H) did not. Error
bars represent mean ± S.D. Statistical analysis was performed using one-way ANOVA with Dunnett’s test (***P < 0.0005, **P < 0.005, *P < 0.05).
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found in tolerant and intolerant residues of RGS14 as de-
fined by 3DMTR behaved as predicted.
RGS10 is also part of the R12 subfamily, however, it is one

of the smallest proteins in the RGS family and shares only a
single conserved RGS domain in common with RGS14 and
RGS12. Next, we examined the effects of selected somatic
mutations on RGS10 functions using the same assay systems
as described above (Fig. 4). In the case of RGS10, two somatic
mutations were tested which were scored by 3DMTR as
either tolerant (S64T) (Fig. 4, C and D) or intolerant (K89M)
(Fig. 4, E and F). Wild-type RGS10 and mutant proteins ex-
pressed well in HEK293 cells (Supplemental Fig. 4B). The
relative position of these residues within the RGS domain
structure are shown in Fig. 4A highlighted as either red (tol-
erant) and blue (intolerant). Somatic mutations within the
tolerant/intolerant residues of RGS10 exhibited phenotypes
inconsistent with the 3DMTR prediction. Substituting a Thr
for tolerant residue Ser64 (S64T) resulted in a partial LoF
shown as a reduction in some, but not all capacity to inhibit
receptor activation of G protein (Fig. 4, C and D). In contrast,
substituting a Met for Lys (K89M) had no effect on RGS10
capacity to inhibit a2AR activation of Gao (Fig. 4, E and F).
Examining these results more closely, we find that residue
K89 is located on an alpha helix away from the GA binding
interface, while S64 is located within the binding interface
(Fig. 4A). This could explain why mutations at these sites re-
sulted in the observed phenotype, though opposite of what
would be expected from the 3DMTR prediction. However, we
cannot rule of the possibility that substitution mutations to
intolerant residue K89 may lead to other change of function
(CoF).
We also measured direct RGS10 binding to active GAo

(Fig. 4B). Results showed that the mutant phenotypes
matched the functional readouts for RGS10 regulation of re-
ceptor G activation. That is, mutant K89M bound active GAo
whereas mutant S64T did not. The fact that S64T showed
some capacity to inhibit receptor-G activation but did not bind
GAo in the pulldown assay may reflect reduced affinity of this
mutation for binding GA. In summary, neither of the two so-
matic mutations found in tolerant and intolerant residues of
RGS10 as defined by 3DMTR behaved as predicted in this
assay.
RGS4 belongs to the B/R4 subfamily of RGS proteins, it is

a small structure composed of only the RGS domain and has
been linked to many cancers by regulating cell proliferation
and apoptosis (Park et al., 2017; Xue et al., 2017; He et al.,
2019). It has also been associated with enhanced glioma cell
motility, thyroid carcinoma, and ovarian cancer (Tatenhorst
et al., 2004; Nikolova et al., 2008; Hurst and Hooks, 2009;
Hurst et al., 2009). RGS4 has been linked to reduced protein
expression in metastatic tumors in breast cancer migration
(Xie et al., 2009), suggesting that RGS4 enhancement can po-
tentially block invasion (Sjogren 2011). The relative position
of selected somatic mutations on RGS4 are shown in Fig. 5A
highlighted as either red (tolerant) and blue (intolerant). As
with RGS14 and RGS10, we measured the effects of RGS4 on
A2AR-directed GAo activation and direct RGS binding to GAo
in cell lysates. For RGS4, three somatic mutations were
tested which were scored by 3DMTR as either intolerant
(K125Q and E126K) (Fig. 5, C–F) or tolerant (E135K) (Fig. 5,
G and H). Unlike RGS14 and RGS10, wild-type RGS4 failed

to completely inhibit A2AR-directed GAo activation, as we’ve
reported before (Brown et al., 2016). RGS4 inhibited GAo ac-
tivation by approximately 75%. Intolerant mutants K125Q
and E126K of RGS4 each exhibit partial loss-of-function phe-
notypes (Fig. 5, C–F), largely failing to inhibit GAo activation,
whereas tolerant mutation E135K (Fig. 5, G and H) behaved
as wild-type RGS4.
We next examined the effects of somatic mutations on

RGS4 capacity to bind directly to Gao (Fig. 5B). Mutants
K125Q and E135K each bound active GAo, whereas mutant
E126K did not bind. Intolerant mutant K125Q unexpectedly
bound GAo. It should be noted that the LoF effects observed
for K125Q mutation (Fig. 5D) are only partial, and that the
protein may be able to bind without fully exerting GAP
effects on GAo. RGS4 mutant E126K protein levels may be
low in the cells (Supplemental Fig. 4C) but sufficiently high
enough to exert GAP effects of GAo.
The Impact of Somatic Mutations on RGS Protein

Regulation of Intracellular cAMP Levels. Findings to
this point examined the impact of cancer somatic mutations
on RGS protein regulation of receptor-directed G protein acti-
vation and G protein binding. The second messenger cAMP
(30-50-cyclic adenosine monophosphate) is ubiquitously ex-
pressed and regulates cell proliferation and differentiation
via PKA/Epac1 activation (Vitale et al., 2009). The cAMP-
PKA signaling pathway has been linked to play roles in
tumor biology. For example, in glioblastoma, increasing lev-
els of cAMP inhibit cell growth by upregulating p21/p27 and
PKA/Epac1-Rap1 signaling (Chen et al., 1998, 2002; Moon
et al., 2012; Zhang et al., 2020). We next tested the effects of
the cancer somatic mutations in key residues of RGS proteins
downstream of G protein activation. For this, we examined
the functions of cancer mutations of either a tolerant or an
intolerant residue for each RGS protein (R173C and D137Y
for RGS14, S64T and K89M for RGS10, and E126K and
E135K for RGS4) in GAi/o-inhibition of adenylyl cyclase stim-
ulated cAMP accumulation (Fig. 6). The accumulation of
cAMP in live cells was measured using the luciferase-based
GloSensor assay (Fig. 6A). Studies have shown RGS4 to regu-
late receptor and G protein–directed inhibition of AC (Huang
et al., 1997), and RGS4 and RGS10 to inhibit forskolin stimu-
lated cAMP production in CHOK1 cells stably expressing
5-HT1A receptor (Ghavami et al., 2004). However, the effect
of RGS14, RGS10 and RGS4 effect on cAMP levels in cells ex-
pressing A2AR has not been explored. To measure RGS
effects on receptor-GAi/o inhibition of cellular cAMP, cells were
stimulated first with A2AR-GAi/o coupled agonist (100 lM UK
14,304) or vehicle (DMSO), followed by forskolin (10 lM FSK)
to stimulate adenylyl cyclase (AC) production of cAMP
(Fig. 6B). Of note, A2AR has been shown to couple to both Gs
and GAi/o in HEK cells (Wade et al., 1999). However, under
the chosen experimental conditions, a2-AR-Gi/o coupling ap-
pears to dominate. That is, agonist activation of A2AR-GAi/o
significantly inhibited FSK-stimulated cAMP accumulation
when compared with vehicle (Fig. 6C), indicating that FSK ac-
tivation overrides any Gas contribution to cAMP formation. In
each case, wild-type RGS14, RGS10 and RGS4 reversed ago-
nist-receptor-G protein inhibition of cAMP formation (Fig. 6,
D–F), with RGS14 being more effective than RGS10 and
RGS4. Intolerant mutant R173C in RGS14 lost capacity to
reverse G protein inhibition of cAMP, whereas tolerant mu-
tant D137Y showed a robust capacity to enhance cAMP
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accumulation (Fig. 6D). Interestingly, tolerant mutation S64T
in RGS10 acted like WT RGS10, opposite to the effects in re-
ceptor-directed G protein activation and G protein binding
(Fig. 4, B–D), while intolerant mutant K89M showed a robust
capacity to enhance cAMP accumulation (Fig. 6E). Intolerant
mutant E126K in RGS4 lost the capacity to reverse G protein

inhibition of cAMP, while tolerant mutant E135K acted like
RGS4 WT (Fig. 6F). The same trends were observed here as
was for receptor-directed G protein activation and G protein
binding (Fig. 5, B and E–H).
Several studies have identified RGS proteins to be regulators

of adenylyl cyclase (AC) activity. RGS2 decreases accumulation

Fig. 6. Assessment of functional impact of wild-type versus mutant forms of RGS14, RGS10 and RGS4 on a2A-AR-G protein directed inhibition of cAMP
levels. HEK293 cells were transfected with constructs encoding GloSensor cAMP reporter, a2A-AR, and RGS proteins of interest. At time 0, cells were
treated with vehicle (DMSO) or agonist (� 100 lM of UK 14,304). After a 10-minute incubation at RT, cells were stimulated with FSK (10 lM).
Luminescence intensity indicative of cAMP production was measured every 5 minutes for up to 50 minutes at room temperature. Values shown
in each time-course panel are means of triplicates from individual experiments, representative of three to four independent experiments. Data
shown as ±S.D.; n 5 3 to 4 independent experiments represent the relative luminescence intensity AUC (Area under the curve). (A) Schematic
representation of the GloSensor cAMP reporter and (B) schematic representation of the assay design. (C) In the absence of RGS proteins, FSK
alone increases cAMP levels while agonist-Gai/o stimulation leads to a significant decrease in cAMP. Bar graph shows comparative data values
of AUC. (D) RGS14 WT compared with mutants resulted in significantly different cAMP levels over time. Bar graph shows comparative data val-
ues of AUC. (E) Comparison between RGS10 and mutants did not lead to any significant differences. Bar graph shows comparative data values
of AUC. (F) Comparison between RGS4 and mutants did not lead to any significant differences. Bar graph shows comparative data values of
AUC. Statistical analysis was performed measuring the AUC, using unpaired t test for C, and one-way ANOVA and Dunnett’s multiple compari-
son test for D–F (*P < 0.05, **P < 0.005).
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of cAMP by directly interacting with type V AC (Salim et al.,
2003; Roy et al., 2006), and RGS4 and RGS10 inhibited G pro-
tein–independent cAMP production in CHOK1 cells
(Ghavami et al., 2004). However, the actions of RGS14
on AC activity has not been explored. Therefore, we
next examined the effect of RGS proteins on forskolin-

stimulated cAMP production directly, in the absence of
agonist-activated A2AR-G protein contributions (Fig.
7A). Results for WT RGS14, RGS10 and RGS4 (Fig. 7,
B–D) did not show an inhibition of FSK-stimulated
cAMP levels in HEK293 cells transfected with a2-AR
without agonist stimulation. Tolerant mutant D137Y in

Fig. 7. Assessment of the functional impact of wild-type versus mutant forms of RGS14, RGS10 and RGS4 on FSK-stimulated cAMP production by
adenylyl cyclase (AC). HEK293 cells were transfected with constructs encoding GloSensor cAMP reporter, a2A-AR, and RGS proteins of interest. At
time 0, cells were treated with vehicle (DMSO) and after a 10-minute incubation at RT, cells were stimulated with FSK (10 lM). Luminescence intensity
indicative of cAMP production was measured every 5 minutes for 50 minutes at room temperature. Values shown in each time-course panel are means
of triplicates from individual experiments, representative of three to four independent experiments. Data shown as ±S.D.; n 5 3 to 4 independent experi-
ments represent the relative luminescence intensity AUC. (A) Schematic representation of the assay measuring the effects of RGS proteins in AC stimu-
lated cAMP. (B) RGS14-D137Y led to a significant increase in AC stimulated cAMP levels compared with WT and other mutants. Bar graph shows
comparative data values of AUC. (C) RGS10-S64T led to a significant increase in AC stimulated cAMP levels compared with WT and other mutants.
Bar graph shows comparative data values of AUC. (D) There was no significant difference between RGS4 WT and mutants. Bar graph shows compara-
tive data values of AUC. Statistical analysis was performed measuring the AUC and analyzing the difference between the conditions using one-way
ANOVA and Dunnett’s multiple comparison test (*P < 0.05).

3DMTR and Functional Analysis of Mutations in RGS Proteins 33



RGS14 showed a robust increase in cAMP levels in the absence of
agonist-stimulated Gi/o-coupled receptor (Fig. 7B). Interestingly,
tolerant mutant S64T in RGS10 showed an increase in cAMP lev-
els when compared with WT RGS10 that had no effect (Fig. 7C).
This trend is the opposite of the results shown in the previous as-
say of RGS10 mutant effects on receptor inhibition of cAMP (Fig.
6E). Mutations in E126K and E135K of RGS4 showed similar re-
sults to the effects shown for WT RGS4 (Fig. 6F).

Discussion
3DMTR Analysis Is a More Accurate Predictor Than

1DMTR. In the present study, we performed a functional
assessment of the predictive capabilities of the novel 3DMTR
analysis applied to RGS proteins. The MTR method analyzes
the regional intolerance to mutations in proteins of interest
(Traynelis et al., 2017). Recent efforts have refined this tool
and improved its predictive qualities (Perszyk et al., 2021). Us-
ing the 3D protein structure allows for a more refined and ac-
curate prediction of important protein regions as it is common
for non-adjacent segments of the polypeptide chain to come to-
gether in the tertiary and quaternary structure of a protein.
We were able to identify important residues that show intoler-
ance to genetic variance in most RGS domains of the RGS
analogs that had a reported protein structure (Supplemental
Figs. 1 and 2). Our results show that the 3DMTR analysis is a
more accurate predictor of regional intolerance when com-
pared with its 1DMTR (Table 2). When we compared against
the predictive qualities of other bioinformatic tools (SIFT,
PROVEAN, MutPRED2; Supplemental Tables 2–4), 3DMTR
was the most accurate at predicting intolerant residues of the
protein that, if mutated, would lead to deleterious effects and
change-of-function phenotypes. All nine selected residues in
RGS14, RGS10 and RSG4 were predicted to be tolerant to
change by the 1DMTR, while the 3DMTR predicted five of
nine to be intolerant to change. The 3DMTR identified intoler-
ant and tolerant mutated residues affected in GPCR-G protein
activation and G protein binding. For RGS14, three of four,
and three of three for RGS4 matched the 3DMTR-permutaiton
analysis predictions. RGS10 mutants gave results that were op-
posite of expected in GPCR-G protein activation and G protein
binding assessments.
While greatly improved over the 1DMTR, the 3DMTR analy-

sis was not perfect in it is predictive power, with discrepancies
noted after some functional assessments. The function of an
RGS protein in GPCR-G protein activation and G protein

binding is dependent on residue selectivity (Xie and Palmer,
2007). When the mutations examined here were tested down-
stream of the GPCR for RGS14 and RGS4 (e.g., cAMP accumula-
tion), the intolerant and tolerant mutants behaved as expected
in most, but not all cases. For example, the tolerant residue
D137Y in RGS14 presented as tolerant in the Ga coupling assay,
but showed an unexpected enhanced gain-of-function effect in
the cAMP assay. Another example of a mutant with a conflicting
phenotype was intolerant residue K89M in RGS10. We found
that K89M was tolerant and behaved as wild-type protein in the
G protein coupling assay but exhibited altered function in the as-
sessment of inhibition of Gi/o-inhibition of cAMP levels causing
an enhanced activity. In both cases, the cAMP assay measures
adenylyl cyclase (AC) activity, and it should be noted that some
RGS proteins bind directly to certain AC isoforms to stimulate
their activity (Salim et al., 2003; Roy et al., 2006). In this case,
tolerant D137Y RGS14 mutant and intolerant K89M RGS10
mutants could interact directly with AC, or the AC-Ga complex,
to stimulate AC enzyme activity. Consistent with this idea, our
findings in Fig. 7 indicate enhanced AC activity with these mu-
tants in the absence of receptor agonist. Alternatively, the func-
tional assessment of these assays relies on the network of
residues that make direct contact with the active Ga. The intol-
erant K89M mutation is found away from the binding site in
RGS10, and this could explain why it did not lead to an altered
loss-of-function phenotype in G protein coupling but did exhibit a
phenotype in the cAMP assay. As a tangential side note, RGS ac-
tions on AC have not been extensively studied. Our observations
of RGS mutant effects on forskolin-stimulated AC raises the
question of whether RGS proteins in general regulate AC differ-
ently with forskolin versus GPCR-Gs-activation, a topic for fu-
ture study.
Despite these examples, the 3DMTR was a good overall pre-

dictor of intolerant residues that resulted in a change-of-func-
tion. The 3DMTR results need to be placed in perspective
compared with other available tools, that are demonstrably less
accurate predictors of change-of-function. For example, and as
noted above, the COSMIC-FATHMM-MKL algorithm inexplica-
bly designated silent mutations in residues N93, A99 and R173
of RGS14 to be pathogenic which, of course, is not possible at
the protein level. In the future, the 3DMTR may also develop
into a more precise tool. Specifically, as the Genome Aggregation
Database (gnomAD) source data for the method collects more
human synonymous and missense variant information, the
analysis may be more accurate and/or require fewer residues to
aggregate data that may lead to improved predictive potential.

TABLE 2
The 3DMTR analysis is a better predictor of key protein residues for functional impact of somatic mutations than 1DMTR
Summary results of the multiple functional assessments performed to characterize the effects of the reported mutations. Overall, the 3DMTR
analysis is a better predictor of intolerant protein regions than 1DMTR. With this information we can better predict which reported mutations
will lead to a change-of-function phenotype.

RGS Selected Mutation 1DMTR Score CoF Prediction 3DMTR Score CoF Prediction CoF Effect Matched 3DMTR

RGS14 S127P 1.04 No 1.03 No GoF x
D137Y 1.08 No 0.93 No GoF �

R173C 0.92 No 0.50 Yes LoF �

R173H 0.92 No 0.50 Yes LoF �

RGS10 S64T 0.85 No 0.91 No Mixed x
K89M 0.69 No 0.48 Yes Mixed x

RGS4 K125Q 0.94 No 0.48 Yes LoF �

E126K 0.99 No 0.42 Yes LoF �

E135K 1.22 No 1.14 No WT �

�, matched prediction; x, no match.
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RGS Proteins in Cancer and the Impact of Linked
Mutations in Signaling Pathways. Roles for RGS pro-
teins in GPCR-G protein signaling in human cancer have not
been extensively studied, though genetic variants in RGS
proteins linked to cancer have been reported (Dai et al.,
2011; Lee et al., 2013; Qutob et al., 2018; DiGiacomo et al.,
2020). GPCRs have been shown to play a role in the initiation
and progression of cancer, suggesting that regulators of
GPCRs are also important in regulating oncogenic pathways.
However, the specific roles of RGS proteins in regulating
oncogenic pathways are still being studied.
In this study, we examined cancer associated mutations in

RGS proteins that overlap with the significant residues identi-
fied by 3DMTR analysis. Of note, most cancer-linked muta-
tions in RGS proteins have not been tested, except for a recent
report (DiGiacomo et al., 2020). Here we tested nine cancer-
linked mutations across three different RGS proteins for their
functional phenotypes. These nine mutants were tested be-
cause they overlapped with residues predicted by 3DMTR to
be either tolerant or intolerant to change and were predicted
by the FATHMM analysis to have deleterious effect in protein
function. These cancer-linked mutations were tested for their
capacity to impact GPCR-G protein signaling. GPCR signaling
can be altered by aberrant receptor overexpression, gain-of-
function activating receptor, or mutations in downstream G
protein signaling effectors, like RGS proteins, that favor onco-
genicity (Gutkind, 1998). A recent study has identified 475
mutations reported in the RGS domain of RGS proteins pre-
sent in 22 cancer types (DiGiacomo et al., 2020). We explored
the functional effects that cancer associated mutants have in
regulating RGS-G protein activation and downstream effector
signaling. Eight out of the nine tested mutants led to a
change-of-function phenotype. Tightly regulated GPCR-G pro-
tein-RGS signaling pathways control many important physio-
logic events. GPCRs show selectivity to Ga-subtypes as well
as RGS proteins (Xie and Palmer, 2007) and activate/regulate
specific downstream second messenger signaling pathways
(e.g., cAMP) to mediate cell migration and survival (O’Hayre
et al., 2014). Mutations in RGS proteins can lead to GPCR sig-
naling dysregulation, which has been linked to roles in certain
cancers (Arang and Gutkind, 2020; DiGiacomo et al., 2020).
Loss-of-function mutations in RGS proteins, like RGS14-
R173C/H and RGS4-E126K/K125Q, could increase G protein
activity serving to promote tumor growth mechanisms (Nishi-
hara et al., 2004). Likewise, RGS genetic variations also could
be associated with patient response to chemotherapies that
specifically target GPCRs (Dai et al., 2011).
Recent advances in genome technology have allowed for a

better understanding of the contribution of intolerant genetic
variants in cancer pathogenesis. This, in turn, has allowed
for improved diagnosis, and improved selection of cancer
treatments in personalized medicine. Tools such as the novel
3DMTR analysis could enable biomedical researchers to priori-
tize which mutations/residues should be tested first for study-
ing change-of-function phenotypes. Examples of this approach
in other disease states such as idiopathic epilepsy have yielded
remarkably promising results (EpiPM, 2015; Perszyk et al.,
2021). Because bioinformatic tools are not perfect, the major
challenge will be to make biologic sense of data from large
publicly available disease-linked genetic data bases and com-
putational analysis. Our small-scale project is an example of

how using the correct bioinformatic tools and testing that
tool’s predictive capabilities can elucidate the role of under-
studied genetic variants in RGS and other proteins in cancer
disease progression.
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