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ABSTRACT
Spatio-temporal specific long noncoding RNAs (lncRNAs)
play important regulatory roles not only in the growth and
development of the brain but also in the occurrence and
development of neurologic diseases. Generally, the occur-
rence of neurologic diseases is accompanied by neuroin-
flammation. Elucidation of the regulatory mechanisms of
lncRNAs on neuroinflammation is helpful for the clinical
treatment of neurologic diseases. This paper focuses on
recent findings on the regulatory effect of lncRNAs on neu-
roinflammatory diseases and selects 10 lncRNAs that have
been intensively studied to analyze their mechanism action.

The clinical treatment status of lncRNAs as drug targets is
also reviewed.
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vides theoretical bases for lncRNAs as drug targets.

Introduction

Up to 98% of human transcribed genes do not encode pro-
teins but are transcribed as ncRNAs. A noncoding RNA with
a length greater than 200 nucleotides is called a long noncod-
ing RNA (lncRNA) (H€uttenhofer et al., 2005). LncRNA is

This work was supported by the National Natural Science Foundation of
China [Grant 81801189].

No author has an actual or perceived conflict of interest with the contents
of this article.

An earlier version of this paper appears in Neuroinflammation in Neurologic
Diseases: The Roles of LncRNAs under the doi MOLPHARM-PI-2022-000526-T.

dx.doi.org/10.1124/molpharm.122.000530.

ABBREVIATIONS: AIM2, absent in melanoma 2; BBB, blood-brain barrier; BDNF, brain-derived neurotrophic factor; CDK5, cyclin dependent
kinase 5; ceRNA, competing endogenous RNA; C/EBPb, CCAAT/enhancer-binding protein B; CNR2, cannabinoid receptor 2; COX-2, cycloox-
ygenase-2; CPSF6, cleavage and polyadenylation specific factor 6; CREB, camp response-element binding protein; CRISPR/Cas9, clustered
regularly interspaced short palindrome repeats; CTGF, connective tissue growth factor; DANCR, differentiation antagonizing non-protein cod-
ing RNA; DDX43, DEAD-box helicase 43; DOT1L, disruptor of telomeric silencing 1-like protein; EED, embryonic ectoderm development;
EZH2, enhancer of zeste 2 polycomb repressive complex 2 subunit; FGF1, fibroblast growth factor 1; FOXQ1, forkhead box Q1; GAS5, growth
arrest specific 5; Gm4419, predicted gene 4419; H19, H19 imprinted maternally expressed transcript; hASC, human adipose-derived stem
cell; HES1, Hes family Bhlh transcription factor 1; HIF-1a, hypoxia-inducible factor-1A; HMGB1, high mobility group box protein 1; HUVECs,
human umbilical vein endothelial cells; IL-6/1b/17, interleukin-6/1B/17; JAG1, jagged canonical notch ligand 1; JAK/STAT, Janus kinase/signal
transducer and activator of transcription; KIF4, Kruppel like factor 4; lncRNA, long noncoding RNA; LPS/ATP, lipopolysaccharide/adenosine
triphosphate; M6A and M5C, N6-methyladenosine and 5-methylcytosine; MALAT1, metastasis-associated lung adenocarcinoma transcript 1;
MCAO, middle cerebral artery occlusion; MEF2C, myocyte enhancer factor 2C; MEG3, maternally expressed 3; miRNA, micro RNA; MMP-7,
matrix metallopeptidase 7; mTOR, mechanistic target of rapamycin; NEAT1, nuclear paraspeckle assembly transcript 1; NEUROD4, neuronal
differentiation 4; NFAT5, nuclear factor of activated T cells 5; NF-jB, nuclear factor kappa light chain enhancer of activated B cells; NLRC4,
NLR family CARD domain containing 4 protein; NLRP3, Nlr family pyrin domain containing 3; NRF2, nuclear factor erythroid 2-related factor 2;
OGD/R, oxygen-glucose deprivation/reperfusion; PI3K/AKT, phosphatidylinositol-3-kinase/Ak strain transforming; PTBP3, polypyrimidine tract
binding protein 3; PIDD1, P53-induced death domain protein 1; PPAR, peroxisome proliferator-activated receptor; PRC2, polycomb repressive
complex 2; PTEN, phosphatase and tensin homolog; PTGS2, prostaglandin-endoperoxide synthase 2; RNAi, RNA interference; SK1, sphingo-
sine kinase 1; SNHG1/8/14/15, small nucleolar RNA host gene 1/8/14/15; SNP, single nucleotide polymorphism; SR, serine/arginine-rich family
splicing factor; SRSF1, serine and arginine rich splicing factor 1; TIMP2, TIMP metallopeptidase inhibitor 2; TNF-a, tumor necrosis factor al-
pha; TP53INP1, tumor protein P53 inducible nuclear protein 1; TUG1, taurine upregulated 1; UCA1, urothelial cancer associated 1; UTR, un-
translated regions; VEGFA, vascular endothelial growth factor A; XIST, X inactive specific transcript; YAP1, yes-associated protein 1; ZEB2,
zinc finger E-box binding homeobox 2.

113

1521-0111/103/3/113–131$35.00 dx.doi.org/10.1124/molpharm.122.000530
MOLECULAR PHARMACOLOGY Mol Pharmacol 103:113–131, March 2023
Copyright ª 2023 by The Author(s)
This is an open access article distributed under the CC BY-NC Attribution 4.0 International license.

http://orcid.org/0000-0002-2433-4860
http://orcid.org/0000-0002-2433-4860
dx.doi.org/10.1124/molpharm.122.000530
https://dx.doi.org/10.1124/molpharm.122.000530
http://creativecommons.org/licenses/by-nc/4.0/


distributed in many tissues and organs of the human body,
but the expression level of lncRNA in vivo is lower than that of
the coding genes. It is worth noting that lncRNAs are spa-
tially and temporally specific (Herriges et al., 2014). The
time specificity of lncRNA indicates that the expression of
lncRNA is different in different stages of growth and devel-
opment of the body or different stages of the occurrence and
development of diseases. The spatial specificity of lncRNA
indicates that the level of lncRNA is different in different
tissues, and highly expressed lncRNAs in tissues often play
important roles. Spatiotemporal-specific lncRNAs are bio-
markers integrating sensitivity and specificity, which can be
used as screening markers, diagnosis markers, and progno-
sis markers in diseases (Lei et al., 2018). On the one hand,
transcription factors, RNA-binding proteins, and micro
RNAs (miRNAs) target lncRNAs to regulate the expression
of target lncRNAs (Yang et al., 2019a; Li et al., 2020b). On
the other hand, by binding RNA, DNA, and protein, lncRNA
regulates related genes at multiple molecular levels, such as
epigenetic regulation, transcriptional regulation, and post-
transcriptional regulation. For example, lncRNA recruits
DNA methyltransferase to regulate the methylation modifi-
cation of target genes; lncRNA binds to transcription factors
to form a complex to regulate the transcription of target genes;
and lncRNA binds to 30-UTR of miRNA to regulate downstream
mRNA (Zhou et al., 2015a; Jia et al., 2019; Ma et al., 2019).
Neurologic diseases are physiologic imbalances, which can

be perceived as abnormal levels of body components under the
joint action of the living environment and genetic code. Neuro-
systemic diseases, including ischemic stroke, neuropathic pain,
and neurodegenerative disorders, have complex pathologic pro-
cesses and persistent neurologic damage, making their diagnosis,
treatment, and prognosis difficult. In-depth studies have revealed
that not only is neuroinflammation a common pathologic pro-
cess of neurosystemic diseases but also that chronic persistent
neuroinflammation may cause secondary damage (Fabisiak
and Patel, 2022; Jiang et al., 2022; Zhang et al., 2022a). The
main processes of neuroinflammation include the actions of
microglia and astrocyte cells in the central immune system
and the behaviors of macrophages and white blood cells in the
peripheral immune system (Carson et al., 2006; Singh, 2022).
The development of neuroinflammation is related to immune
system cell phenotypes change, inflammatory factors release, in-
flammasome activation, and signal pathways activation, which
is accompanied by the destruction of the blood-brain barrier
and the penetration of cerebrospinal fluid (Takata et al., 2021).
As biomarkers and regulators, lncRNAs take part in neuro-

systemic diseases, due to the easy availability of blood and the
high sensitivity and specificity of lncRNAs. Blood lncRNAs
are ideal biomarkers for the diagnosis and prognosis of dis-
eases (Badowski et al., 2022). As regulatory factors, lncRNAs
regulate cell proliferation, differentiation, invasion, migration,
inflammation, and vascular formation and are considered as
potential drug targets (Li et al., 2016). It should be noted that
lncRNA plays a pro-inflammatory or an anti-inflammatory role
in inflammation, regulating the activation of glial cells, the re-
lease of inflammatory factors such as IL-6, cyclooxygenase-2
(COX-2), tumor necrosis factor alpha (TNF-a), and the activa-
tion of absent in melanoma 2 (AIM2), Nlr family pyrin domain
containing 3 (NLRP3) inflammasome, nuclear factor kappa
light chain enhancer of activated B cells (NF-jB), phosphatidy-
linositol-3-kinase/Ak strain transforming; (PI3K/AKT), Janus

kinase/signal transducer and activator of transcription (JAK/
STAT) signal pathways (Cao et al., 2018; Han et al., 2018; Zhou
et al., 2018a; Liang et al., 2020). Different lncRNAs may play
similar roles in neuroinflammation associated with the same dis-
ease, and the same lncRNA may play different roles in neuroin-
flammation associated with different diseases. At present, some
articles have reviewed the role of lncRNA in neurosystemic dis-
eases (Chen et al., 2021; Ebrahimi and Golestani, 2022; Jiang
et al., 2022), but there is no article on the comparison of the role
of the same lncRNA in neuroinflammation in different diseases.
In this paper, 10 lncRNAs related to neuroinflammation and
their roles in different neurosystemic diseases are highlighted,
and the current application of lncRNAs that act as drug targets
in clinical treatment is reviewed (Fig. 1, Table 1).
MALAT1. Metastasis-associated lung adenocarcinoma tran-

script 1 (MALAT1) is located at chromosome 11q13.1. It is univer-
sally expressed in human tissues including bone marrow,
thyroid, and prostate. Transcription factor STAT3, Yes-asso-
ciated protein 1, and Kruppel like factor 4 promote the ex-
pression of MALAT1 through targeting promoter. RNA such
as miR-146b-5p, miR-9, and lncRNA differentiation antago-
nizing non-protein coding RNA could regulate the level of
MALAT1. Furthermore, disruptor of telomeric silencing
1-like protein also directly binds to MALAT1 (Leucci et al.,
2013; Duan et al., 2019; Sun et al., 2019; Peng et al., 2021;
Xiong et al., 2021; Jing et al., 2022; Yang et al., 2018b). More
significantly, the two main post-transcriptional modifications of
MALAT1 are N6-methyladenosine and 5-methylcytosine modifi-
cation (Squires et al., 2012; Liu et al., 2013). MALAT1 interacts
with RNA, DNA, and protein to realize its biologic function.
For example, MALAT1 is combined with miRNA, which
jointly regulates downstream mRNA. Binding to serine/argi-
nine-rich family splicing factors or RNA binding proteins to
show the ability of alternative splicing and transcriptional
regulation (El Bassit et al., 2017; Xie et al., 2017; Scherer
et al., 2020). MALAT1 plays an important regulatory role in
physiologic and pathologic processes. In a physiologic state,
MALAT1 plays a regulatory role in cell proliferation, dif-
ferentiation, migration, epithelial-mesenchymal transition,
autophagy, apoptosis, and so on (Cheng et al., 2019; Luo
et al., 2019; Bao et al., 2020; He et al., 2020; Pi et al., 2022;
Zang et al., 2022).
MALAT1 functions as a marker and regulator in disease states.

As a screening marker, single nucleotide polymorphisms analysis
of MALAT1 showed that MALAT1 was associated with cancer
and immune disease susceptibility (Chen et al., 2020; Mao et al.,
2021). MALAT1 as a diagnostic marker can be used to diagnose
atherosclerotic cardiovascular disease, lung cancer, and breast
cancer (Zhao et al., 2020b; Liu et al., 2021b). When combined
with other biomarkers for the diagnosis of disease, the sensitivity,
and specificity of diagnosis are improved; for example, MALAT1
interacts with miR-125b as a coronary heart disease biomarker,
MALAT1-H19/miR-19b-3p axis as a diabetic neuropathy bio-
marker (Lv et al., 2021a; Rajabinejad et al., 2022), and MALAT1
as a prognostic marker. Overexpression of MALAT1 was associ-
ated with a dismal prognosis, manifested in glioblastoma, lung
cancer, and other numerous malignancies (Li et al., 2018a).
MALAT1 acts as a detrimental factor or protective factor

in the occurrence and development of different diseases.
Therefore, strengthening the protective effect and decreasing
the dangerous effect of MALAT1 by regulating the level of
MALAT1 may reverse the disease process, making it a
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potential target for disease treatment (Abdulle et al., 2019;
Yang et al., 2020). In the study of MALAT1 in acute spinal
cord injury, MALAT1 has been found to be associated with
neuroinflammation. Subsequent researchers have shown that
MALAT1 also plays a role in the neuroinflammation that
accompanies neuropathic pain, multiple sclerosis, Alzheimer’s
disease, traumatic brain injury, Parkinson’s disease, and cere-
bral ischemic stroke. MALAT1 was up-regulated in a chronic
constriction injury rat model of neuropathic pain, and the pain
threshold assessment and expression of IL-6, IL-1b, TNF-a,
and COX-2 showed that MALAT1 promoted the development
of neuropathic pain and neuroinflammation. The current study
found three different mechanisms to achieve this effect(Chen
et al., 2019b; Ma et al., 2020b; Wu et al., 2020b). Ma et al. con-
firmed that MALAT1 and miR-129-5p are highly expressed in
neuropathic pain, and together with the opposite expression of
HMGB1 [HMGB1 protein is a kind of protein that usually
binds with cytokines TNF-a, IL-6, and IL-1b to trigger inflam-
matory response and plays an important role in the induction
of inflammation and autophagy (Mori et al., 2018)], the compet-
ing endogenous RNA (ceRNA) network formed by the three fac-
tors regulates the disease process (Ma et al., 2020b). Chen
et al. showed that MALAT1 played a pro-inflammatory role
by targeting the miR-206/ZEB2 signal axis (Chen et al.,
2019b). Wu et al. verified the role of MALAT1/miR-154-4p/
AQP9 axis in neuropathic inflammation (Wu et al., 2020b).
The pro-inflammatory effect of MALAT1 is also reflected in
Parkinson’s disease and acute spinal cord injury. Cai et al.
showed that MALAT1 down-regulation improved the exercise
ability of MPTP-treated C57BL/6 mice. The C57BL/6 mice
model treated with MPTP is a valuable model of Parkinson’s

disease. In LPS/ATP-pretreated BV2 microglia cells, the ability
of MALAT1 to trigger neuronal injury is due to the recruitment
of EZH2 to act on the promoter of NRF2 to achieve negative reg-
ulation of NRF2, thus activating NLRP3-mediated inflamma-
some and increasing reactive oxygen species level (Cai et al.,
2020b). Zhou et al. showed that MALAT1 down-regulation can
inhibit the progression of acute spinal cord injury, while miR-
199b inhibitor can induce its production, suggesting that MA-
LAT1 and miR-199b are negatively correlated, which regulates
the IKKb/NF-jB signaling pathway (Zhou et al., 2018a). The
IKKb/NF-jB signal pathway is a classic pathway regulating in-
flammation that plays a pro-inflammatory role in multiple scle-
rosis, ischemic stroke, and epilepsy. This pathway also regulates
the apoptosis of neurons and the formation of glial scars in spi-
nal cord injury ( Zhou et al., 2016; Babkina et al., 2021).
The anti-inflammatory effect of MALAT1 is reflected in

multiple sclerosis, Alzheimer’s disease, ischemic stroke, and
traumatic brain injury. In a study related to Alzheimer’s dis-
ease, MALAT1 regulates the expression levels of PTGS2,
cyclin-dependent kinase 5 (CDK5), and FOXQ1 by regulating
miR-125b, which stimulates neurite outgrowth and inhibits
neuron apoptosis and neuroinflammation (Ma et al., 2019).
The regulation of miR-125b by MALAT1 shows that lncRNA
can down-regulate neurotoxic miRNA, making it play a neuro-
protective role. MiR-125b aggravates the process of Alzheimer’s
disease, which is reflected in down-regulating sphingosine
kinase 1 protein expression, making tau hyperphosphorylation,
and phosphorylation, neurons apoptosis, and inflammation (Jin
et al., 2018c). The effect of MALAT1 antagonizing miR-125b on
promoting cell proliferation is also reflected in oral squamous
cell carcinoma and bladder cancer (Xie et al., 2017; Chang and

Fig. 1. Common neurosystemic diseases and lncRNAs associated with neuroinflammation. Some common neurosystemic diseases include ischemic
stroke, Alzheimer's disease, Parkinson's disease, traumatic brain injury, epilepsy, multiple sclerosis, spinal cord ischemia, neuropathic pain, and
multiple sclerosis. Each disease has its own unique pathologic features, but neuroinflammation is the common pathologic process. Reducing the pro-
duction of neuroinflammation in a way that improves the brain environment, protects nerve cells, and alleviates the progression of the disease. Ac-
cumulated studies have confirmed that lncRNAs play pro-inflammatory or anti-inflammatory roles in the regulation of neuroinflammation.
Furthermore, lncRNAs including MALAT1, NEAT1, TUG1, SNHG family, H19, MEG3, XIST, GAS5, UCA1, and GM4419 have been found to allevi-
ate more than one neurosystemic disease by regulating neuroinflammation.

LncRNAs Associated With Neuroinflammation 115
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Hu, 2018). Ruan et al. found that small molecule Polydatin reg-
ulates transcription factor CCAAT/enhancer-binding protein B
binding to the promoter region of MALAT1 and promotes the
expression of MALAT1. Up-regulated MALAT1 inhibits inflam-
matory response and apoptosis by regulating camp response-
element binding protein/PGC-1a/PPARc pathway, ameliorating
stroke (Ruan et al., 2019). A study has shown that hASC-
derived exosomes contain lncRNAs including MALAT1 as well
as proteins. Hasc-derived exosomes tend to migrate to liver,
and it is speculated that exosomes may act to reduce the pro-
duction of spleen immune cells or inhibit the inflammatory re-
sponse of immune cells, thereby reducing secondary brain
damage caused by peripheral immune cells through broken
blood-brain barrier (BBB) (Gupta and Pulliam, 2014). In addi-
tion, although hASC-derived exosomes rarely migrate into the
brain, they have direct neuroprotective effects on nerve cells
(El Bassit et al., 2017). HASC-derived exosomes containing
MALAT1 inhibit ephrin family gene expression after traumatic
brain injury, which can reduce the penetration of peripheral
immune cells into the brain by damaging BBB (Patel et al.,
2018). Changes in the phenotype of immune cells indicate
changes in the function of immune cells. Masoumi et al. found
in the multiple sclerosis cell model that the silencing of
MALAT1 promotes the differentiation of macrophage and
T cell to pro-inflammatory M1 phenotype and TH1/Th17
phenotype, respectively (Masoumi et al., 2019). These re-
sults suggest that MALAT1 can be a potential target in
multiple sclerosis disease to inhibit the pro-inflammatory
effects of macrophages and T cells.
NEAT1. Nuclear paraspeckle assembly transcript 1 (NEAT1)

is located at chromosome 11q13.1. NEAT1 is commonly ex-
pressed in ovary, prostate, and colon. Transcription factors Yin
Yang 1 and STAT3 target the NEAT1 promoter to regulate
NEAT1/miR-205-3p/MMP16 and NEAT1/miR-4688/TULP3, re-
spectively (Cai et al., 2020a; Li et al., 2020b). MiR-340-5p tar-
gets NEAT1 by regulating NEAT1/HSF1/MMP11 (Gao et al.,
2022). THOC4 protein regulates NEAT1 by directly targeting
the promoter region or by binding to cleavage and polyadenyla-
tion specific factor 6, which can activate NEAT1 (Klec et al.,
2022). RNA-binding protein SRSF1 regulates the cell cycle of
glioma cells by regulating NEAT1 (Zhou et al., 2019). Under
physiologic conditions, NEAT1 is involved in regulating the dif-
ferentiation of human bone marrow–derived mesenchymal stem
cells and human embryonic stem cells. It also participates in the
activation of T helper 2 cells (Chen and Carmichael, 2009;
Zhang et al., 2019; Huang et al., 2021b).
As an oncogenic gene, NEAT1 is a prognostic marker of

cancer such as breast cancer, nasopharyngeal carcinoma, dif-
fuse large B cell lymphoma, and acute lymphoblastic leuke-
mia (Deng et al., 2018; Liu et al., 2019; Pouyanrad et al.,
2019; Quan et al., 2020).
As a regulator, it showed pro-inflammatory effects in

Parkinson's disease, neuropathic pain, and epilepsy and
anti-inflammatory effects in traumatic brain injury. Generally,
Parkinson's disease models can be divided into cellular models
and animal models. In cellular models, MPP1 is used to recapit-
ulate the disease. In addition, it is more common to use 6-hy-
droxydopamine and MPTP in animal models. In vivo and
in vitro models of Parkinson’s disease, the levels of inflammatory
cytokines IL-1b, IL-6, and TNF-a increased. However, NEAT1
knockdown reversed the ascending effect, suggesting a pro-
inflammatory effect of NEAT1. Mechanismally, NEAT1T
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negatively regulated miR-212, which protected SK-N-SH cells
that were treated with MPP1. The downstream targets
AX1N1 and RAB3IP are combined to form two axes, namely
NEAT1/miR-212-3p/AX1N1 and NEAT1/miR-212-5p/RAB3IP
(Song et al., 2018; Liu et al., 2020c; Liu et al., 2021d). Previ-
ous studies have shown that AX1N1 and RAB3IP were re-
lated to cell growth and apoptosis (Guo et al., 2018; Zhou
et al., 2018b). However, under the regulation of NEAT1, they
could also regulate inflammation to affect disease progres-
sion. Xia et al. found that NEAT1 decreased paw withdrawal
threshold and paw withdrawal latency of rat model and pro-
moted pro-inflammatory cytokines of spinal cord tissues.
When NEAT1 was knocked down by shRNA, the level of
miR-381 was increased, while the level of HMGB1 was de-
creased. Moreover, miR-381 inhibitors can not only reverse
the anti-inflammatory effects by the NEAT1 knockdown but
can also reverse the improvement of mechanical allodynia
and thermal hyperalgesia by HMGB1 knockdown. In conclu-
sion, NEAT1, miR-381, and HMGB1 were involved in neuro-
pathic pain progression and microglial inflammation (Xia
et al., 2018). Wan and Yang found that the expression of
miR-129-5p and NEAT1 were opposite in CTX-TNA cells
treated with IL-1b. CTX-TNA cells treated with IL-1b is a
common model of epilepsy that is used extensively for basic
research. Wan and Yang emphasized that the expression of
Notch1, JAG1, and HES1 was significantly altered under
NEAT1/miR-129-5p regulation. Activation of the Notch sig-
nal inhibited cell viability and promoted inflammatory cyto-
kines IL-6 and TNF-a (Wan and Yang, 2020). However, there
is a controversy about whether NEAT1 acts as a pro-inflam-
matory gene or an anti-inflammatory factor in ischemic
stroke. There are two major cellular models of ischemic
stroke: oxygen glucose deprivation of nerve cells
(SH-SY5Y cells and N2a cells) and oxygen glucose depriva-
tion of glial cells (BV2 cells and U87 cells). The up-regulation
of b-catenin and its downstream c-Myc and CyclinD1 indi-
cates the activation of the Wnt/b-catenin pathway, which is
regulated by NEAT1 that up-regulated by Ying Yang 1. More-
over, overexpression and knockdown of NEAT1 resulted in the
aggravation and remission of inflammation and apoptosis of mi-
croglial cells treated with oxygen-glucose deprivation/reperfusion.
However, Ni et al. showed that NEAT1 inhibited AKT/STAT3
signal to promote cell viability and inhibit microglial M1 polari-
zation and cell apoptosis in BV2 cells treated with oxygen-glu-
cose deprivation/reperfusion (Ni et al., 2020). There are two
phenotypes of glial cells: the M1 phenotype (pro-inflammatory
phenotype) and the M2 phenotype (anti-inflammatory pheno-
type). The two inconsistent studies on NEAT1 in ischemia/reper-
fusion may be due to the different cells used and the different
oxygen-glucose deprivation/reperfusion time: one was 2H, and
the other was 4H. It is well known that glial cells may have dif-
ferent stress responses under different stress conditions. Zhong
et al. showed that NEAT1 inhibits the expression of PIDD1, in-
hibiting the progression of traumatic brain injury. Specifically,
knockdown of NEAT1 enhanced the apoptosis of HT22 cells and
the release of cytokines IL-1b, TNF-a, and nitrate oxide. How-
ever, overexpression of NEAT1 improved the motor function,
learning ability, and spatial memory of traumatic brain injury
mice. PIDD1 is also known as p53-induced death domain protein
1, which as an effector participates in p53-induced cell death
(Berube et al., 2005). But the up-regulation of NEAT1 can be

promoted by Bexarotene, which is an RXR-a agonist. RXR-a has
been proved to bind to NEAT1 (Zhong et al., 2017).
TUG1. Taurine up-regulated 1 (TUG1) is located at chro-

mosome 22q12.2. It is universally expressed in testis, endo-
metrium, and thyroid. Transcription factor early growth
response 1 targets the promoter of TUG1 to up-regulate the
level of TUG1, activating EZH2/TIMP2 to promote the pro-
gression of adenomyosis (Shi et al., 2019a). Interestingly, a
study has shown that miR-1299 and TUG1 can form a feed-
back loop with the participation of NOTCH3. Specifically,
TUG1 is the downstream target of NOTCH3. TUG1 can act
as ceRNA and negatively regulate miR-1299. And miR-1299
is a negative regulator of NOTCH3 (Pei et al., 2020b). In
osteosarcoma, the FOXM1/TUG1/miR-219a-5p/AKT pathway
forms a similar feedback loop (Li et al., 2018f). Another well-
known pathway—Notch signal—also can regulate TUG1 to
maintain stemness of glioma stem cells (Katsushima et al.,
2016). TUG1 regulates angiogenesis and cell differentiation
through competitively binding to miRNA under physiologic
conditions. For example, TUG1/miR-505-3p/VEGFA axis pro-
motes angiogenesis of HUVECs (Liu et al., 2021c). TUG1/
miR-545-3p/cannabinoid receptor 2 axis, TUG1/miR-222-3p/
Smad2/7, and TUG1/Lin28A regulates differentiation of os-
teoblasts (He et al., 2018; Hao et al., 2020; Wu et al., 2020a).
In addition, the TUG1/miR-143/FGF1 axis regulates endothe-
lial differentiation of adipose-derived stem cells (Xue et al.,
2019).
As a biomarker, TUG1 was associated with a poor progno-

sis of gastrointestinal, urologic, and hematologic cancers
(Huang et al., 2021a). Furthermore, TUG1 was related to
gemcitabine resistance in pancreatic ductal adenocarcinoma
and chemotherapy resistance in esophageal squamous cell
carcinoma (Jiang et al., 2016; Yang et al., 2018a).
As a regulator, TUG1 has been implicated in multiple scle-

rosis, ischemic stroke, and spinal cord ischemia reperfusion.
In these neurosystemic diseases, TUG1 promotes the devel-
opment of neuroinflammation by activating the NF-jB signal
pathway. TUG1 was found to be highly expressed in glial
cells and nerve cells of the Parkinson’s disease model. Knock-
down of TUG1 in C57BL/6J mice treated with MPTP inhib-
ited the levels of TNF-a, IL-6, and IL-1b. On the other hand,
overexpression of TUG1 in MPP1-treated SH-SY5Y cells pro-
moted the development of inflammation. In addition, miR-
152-3p was the target of TUG1, which played a protective
role in neurons by reducing apoptosis and neuroinflamma-
tion. Mechanismally, miR-152-3p could target the tumor sup-
pressor PTEN to regulate SH-5Y5Y cell apoptosis. Therefore,
it was concluded that TUG1/miR-152-3p/PTEN played an im-
portant role in Parkinson’s disease neuroinflammation (Zhai
et al., 2020; Cheng et al., 2021). Yue et al. showed that TUG1
was the ceRNA of miR-9-5p and controlled its downstream
target P50. MiR-9-5p bound to the 30UTR of P50 and nega-
tively regulated the activation of the NF-jB signaling path-
way, thereby inhibiting inflammation (Yue et al., 2019). In
BV2 cells treated with oxygen-glucose deprivation/reperfusion,
TUG1 was up-regulated, while miR-145a-5p was down-regulated.
MiR-145a-5p, a downstream target of TUG1, regulated the ratios
of p-P65/P65 and p-IkBa/IkBa, inhibiting microglial M1 polariza-
tion and neuroinflammation. Therefore, overexpression of TUG1
or knockdown of miR-145a-5p would aggravate stroke-induced
neuroinflammation by activating the NFjB pathway (Wang
et al., 2019a). In the in vivo experiment of spinal cord
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ischemia reperfusion (researchers clamp the descending
aorta of Sprague–Dawley rats for 14 minutes to simulate
spinal cord ischemia, then remove clamps to simulate reper-
fusion), researchers found inflammation damage (neurologic
defects and blood-spinal cord barrier leakage) was mediated
by NFjB/IL-1b. Moreover, TUG1 can regulate this signal
pathway through miR-29b-1-5P/MTDH and TRIL/TLR4. It
is worth mentioning that TLR4-mediated activation of
NFjB pathway is the signal of microglia actively participat-
ing in inflammatory response (Li et al., 2014). Knockdown
of TUG1 by siRNA not only decreased the expression of
TLR4 but also inhibited the activation of NFjB pathway
mediated by TLR4. TRIL, which was also down-regulated
by TUG1-siRNA, also acted on TLR4 to regulate the inflam-
matory response. These mechanisms explained the phenom-
enon that down-regulation of TUG1 resulted in decreased
release of inflammatory factor IL-1b and decreased number
of Iba-1-positive microglia, suggesting a pro-inflammatory
role of TUG1 in spinal cord ischemia reperfusion (Jia et al.,
2019; Jia et al., 2021).
SNHG family. The SNHG family consists of SNHG1 to

SNHG22, a total of 22 members. The roles of family members
in cancer have been reviewed, and it can be seen that each
member shows different expression patterns and different
regulatory mechanisms in cancer (Qin et al., 2020). Studies
in recent years have found that family members play regula-
tory roles in neurologic diseases. In the following, we focus on
the roles of SNHG1 and SNHG2 in neurosystemic diseases
associated with neuroinflammation.
Small nucleolar RNA host gene 1 (SNHG1) is located at

chromosome 11q12.3. It is greatly expressed in bone marrow,
ovary, and lymph node. Transcription factor SP1 binds to the
promoter region of SNHG1 to regulate transcriptional activ-
ity and epilepsy development (Zhao et al., 2020a). In a physi-
ologic state, SNHG1 regulates osteogenic differentiation of
human bone marrow stromal cell, fibroblastic cells from the
posterior longitudinal ligament, and periodontal ligament
stem cells (Li et al., 2020d; Wang et al., 2020a; Zhang et al.,
2021a).
SNHG1 is associated with the poor prognosis of osteosar-

coma, serous epithelial ovarian cancer, liver cancer, and
other cancers (Wang et al., 2018a; Pei et al., 2020a; Zhang
et al., 2020a).
As a regulatory factor, SNHG1 plays pro-inflammatory or

anti-inflammatory roles in neuroinflammation caused by is-
chemic stroke, Parkinson's disease, and neuropathic pain. Lv
et al. found that the expression of SNHG1 in HCMEC/D3 cells
with oxygen-glucose deprivation condition was decreased com-
pared with that in control cells. The luciferase reporter assay
verified the targeting relationship between SNHG1 and miR-
376a, and miR-376a had pro-inflammatory and pro-apoptotic
effects. However, CBS/H2S can reverse the effects of miR-
376a by reducing the release of IL-6, IL-1b, and TNF-a inflam-
matory factors in the OGD cell model and the transformation
of microglia into M2 anti-inflammatory phenotype in the
MCAO animal model (Zhang et al., 2017; Lv et al., 2021b).
Meng et al. found that SNHG1 and NLRPS in C57BL/6 mice
(intraperitoneal injection of MPTP-HCl) and BV2 cells (injec-
tion of LPS) were up-regulated. Moreover, SNHG1 bounded
NLRP3 through competition with miR-7, which could promote
microglial activation and inflammation and promote primary
dopaminergic neurons apoptosis (Meng et al., 2021). CDKs are

a family of Ser/Thr kinases. CDKs participate in physiologic
and pathologic responses by regulating cell cycle. Importantly,
CDKs can promote the expression of pro-inflammatory factors
in G1 phase (Schmitz and Kracht, 2016). Zhang et al. found that
SNHG1 bound to the CD4 promoter region and increased the
release of inflammatory factors IL-6, TNF-a, IL-1b, and SNHG1
knockdown could alleviate neuropathic pain progression, sug-
gesting that SNHG1 was a target for neuropathic pain clinical
treatment (Zhang et al., 2020b).
Similar to the regulation of SNHG1 in neuropathic pain,

SNHG4 overexpressed in model rats promoted neuroinflam-
mation and neuropathic pain progression as a sponge mole-
cule for miR-423-5P. Moreover, down-regulation of SNHG4
can reverse the increased expression of IL-6, IL-12, and
TNF-a and the enhancement of mechanical allodynia and
thermal hyperalgesia caused by depletion of miR-423-5p,
suggesting that knockdown of SNHG4 may be a potential
treatment of neuropathic pain and neuroinflammation (Pan
et al., 2020). In the environment of cerebral ischemia and
hypoxia, knockdown of AQP4 (the main water channel pro-
tein in the brain) reduced BBB damage and toxic edema to
alleviate brain damage (Wang et al., 2015). Under the same
conditions, TP53INP1 showed its pro-inflammatory and
pro-apoptotic effects (Li et al., 2018e). In studies on ischemic
stroke, both SNHG14 and SNHG15 formed miR-199b/AQP4
and miR-455-3p/TP53INP1 axis through the ceRNA net-
work to promote glial cells and neurons apoptosis, oxidative
stress, and inflammation. In oxygen-glucose deprivation-
induced BV2 and PC12 cells, the levels of inflammatory factors
(TNF-a and IL-1b), reactive oxygen species and malondialde-
hyde were up-regulated. In addition, knockdown of SNHG14
and SNHG15 could reverse the increased levels, suggesting
that SNHG14 and SNHG15 were involved in the regulation of
neuroinflammation and oxidative stress in ischemic stroke.
Moreover, deletion of miR-199b and miR-455-3p could weaken
the anti-inflammatory effects of SNHG14 and SNHG15 knock-
down. However, the overexpression of downstream targets of
miR-199b, and miR-455-3p attenuated the decreased expres-
sion of TNF-a and IL-1b (Fan et al., 2021; Zhang et al., 2021b).
Different from their pro-inflammatory effects, the down-
regulated expression of SNHG8 in primary microglial cells
(treated with oxygen-glucose deprivation/reperfusion) was
manifested as anti-inflammatory. SNHG8 could not only
reverse the up-regulation of IL-1b, IL-6, and TNF-a in
microglia caused by middle cerebral artery occlusion but
also inhibit the release of pro-inflammatory factors in
microglia caused by miR-425-5p. Mechanismally, SNHG8
was identified as the ceRNA of miR-425-5p, and the highly
expressed SIRT1 in the model could be inhibited by miR-
425-5p. SIRT1 regulates the oxidative respiration and
cellular survival of hypothalamic neurons and can also
deacetylation p65 to make NFjB inactivation. Therefore,
SNHG8 regulated miR-425-5p/SIRT1 to inactivate down-
stream NFjB and inhibit microglial inflammation and
BBB damage (Kauppinen et al., 2013; Tian et al., 2021).
GAS5. SNHG2, known as growth arrest specific 5 (GAS5), is

located at chromosome 1q25.1. GAS5 is commonly expressed in
the ovary, thyroid, bone marrow, and other tissues. MiR-196a
negatively regulates GAS5 to inhibit esophageal squamous cell
carcinoma growth. In breast cancer MCF-7 and MDA-MB-
231 cells, miR-21 interacts with GAS5 ( Zhang et al., 2013;
Wang et al., 2018b). In a physiologic state, GAS5/miR-18a/
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connective tissue growth factor was involved in the adipogenic
differentiation of mesenchymal stem cells (Li et al., 2018c).
GAS5/miR-23a/ATG3 is involved in autophagy and cell viabil-
ity of 293T cells (Li et al., 2018b). GAS5/NODAL signal partic-
ipates in the self-renewal of human embryonic stem cells (Xu
et al., 2016). GAS5/miR-21/FGF1 is involved in the prolifera-
tion and apoptosis of growth plate chondrocytes (Liu et al.,
2018).
As a biomarker, GAS5 is related to the risk of gastric can-

cer, uterine cervical cancer, and prostate cancer and is also a
potential marker of sepsis inflammation (Lin et al., 2019;
Dong et al., 2020; Weng et al., 2020; Zhang et al., 2022b). Ad-
ditionally, GAS5 associated with miR-21 and miR-140 as po-
tential markers of allergic rhinitis (Song et al., 2021).
As far as current studies are concerned, GAS5 is up-regu-

lated in neurosystemic diseases and plays a pro-inflammatory
role in neuroinflammation. Xu et al. found that overexpression
of GAS5 could promote LPS-treated microglial inflammation,
while miR-223-3p had the opposite effect by inhibiting NLRP3
inflammasome. As a competitive RNA, GAS5 reduced the ex-
pression of miR-223-3p, leading to the activation of the NLRP3
inflammasome. Thus, GAS5/miR-223-3p/NLRP3 plays an im-
portant role in the occurrence and development of Parkinson’s
disease (Xu et al., 2020). Spinal cord ischemia in vivo study
found that the expression of GAS5 and MMP-7 was abnormally
high, and the expression of GAS5 was positively correlated
with the expression of MMP-7. Knockdown of both GAS5 and
MMP-7 could cause low expression of cleaved caspase-3 and IL-
1b, which means that GAS5 and MMP-7 were related to apo-
ptosis and inflammation in spinal cord ischemia. Therefore,
knocking down GAS5 can alleviate apoptosis and inflammation
after spinal cord ischemia-reperfusion through the MMP-7/
cleaved caspase-3 axis (Zhang et al., 2021d). Sun et al. showed
that GAS5 inhibited the differentiation of microglia into protec-
tive M2 phenotype. However, loss of the M2 phenotype leads to
demyelination, exacerbating the course of demyelinating dis-
eases similar to multiple sclerosis. PRC2 is a polymer composed
of EZH1, EZH2, embryonic ectoderm development, and other
subunits (Laugesen et al., 2019). EZH2 subunit is the main cat-
alytic subunit of PRC2 complex, which can bind not only up-
stream GAS5 but also downstream IRF4 in multiple sclerosis.
IRF4 is an important transcription factor in M2 phenotypic dif-
ferentiation of microglia. Therefore, there exists PRC2/IRF4
axis in downstream of GAS5 to regulate M2 phenotype dif-
ferentiation. In addition, it is speculated that there may be
an IL-4/M-CSF-PI3K-mTOR axis in upstream of GAS5 (Sun
et al., 2017).
H19. H19 imprinted maternally expressed transcript (H19)

is located at chromosome 11p15.5. It is more often expressed
in the placenta than in other tissues. LncRNA PTCSC3 regu-
lates H19 to inhibit triple-negative breast cancer cell prolifera-
tion (Wang et al., 2019b). Transcription regulator HIF-1a
upregulates H19 level, and knockdown of H19 improves the
progression of liver fibrosis (Wang et al., 2020b). DEAD-box
helicase 43 regulates H19 through demethylation and then in-
creases its expression, which is involved in chronic myeloid leu-
kemia (Lin et al., 2018). In the physiologic state, H19 regulates
the differentiation of stem cells. The regulation of differentia-
tion is not limited to osteogenic, neural-like, and adipocyte dif-
ferentiation of bone marrow mesenchymal stem cells (Huang
et al., 2016; Farzi-Molan et al., 2018; Ma et al., 2020a). Addi-
tionally, H19 regulates the odontogenic differentiation of

human dental pulp stem cells (Zeng et al., 2018; Zhong
et al., 2020).
The relationship between H19 SNPs and hepatoblastoma

susceptibility has also been demonstrated (Tan et al., 2021).
It has also become a diagnostic marker for gastric cancer and
a prognosis marker for esophageal squamous cell cancer,
papillary thyroid cancer, and glioblastoma (Jiao et al., 2019;
Li et al., 2019b; Schaalan et al., 2020; Liu et al., 2021e).
In existing studies, H19 was upregulated in neuroinflam-

mation and played a pro-inflammatory role. Rezaei et al.
found that H19 was associated with ischemic stroke suscepti-
bility and could be used as a diagnostic biomarker for ische-
mic stroke. The molecular mechanism of H19 in ischemic
stroke was revealed by Wang et al. Histone deacetylases
functioned as nerve injury in brain injury models. Its inhibi-
tors, sodium butyrate and vorinostat, could improve the dis-
ease outcome by inhibiting the activation of microglia. In
vitro, H19 targeted HDAC1 to inhibit the polarization of
microglial M2 phenotype and promote neuroinflammation
(Jaworska et al., 2017; Wang et al., 2017a ; Rezaei et al.,
2021). Gu et al. found that H19 expression was up-regulated
in the spinal cord injury model compared with control mice.
Up-regulation of H19 expression could promote apoptosis
and inflammation of BV2 cells. With interaction through the
complementary base pairing of miR-325-3p and H19, it was
found that miR-325-3p was the direct target gene of H19.
MiR-325-3p is a tumor suppressor, which had a neuroprotec-
tive effect under ischemic and hypoxic stress conditions. It
showed an inhibitory effect on inflammation in diabetic ne-
phropathy. NEUROD4 is a harmful factor in the process of spi-
nal cord injury (Yang et al., 2018c), and the targeted regulation
of mir-325-3p can inhibit its expression, reducing glial inflam-
mation and oxidative stress. Therefore, H19, miR-325-3p, and
NEUROD4 formed a ceRNA network to regulate the disease
process in spinal cord injury (Gu et al., 2021). Janus kinase/
signal transducer and activator of transcription is a known sig-
nal pathway, which is related to cell proliferation, inflamma-
tion, and other processes. In the status epilepticus model (a
status epilepticus model that could be constructed by microin-
jecting kainic acid into the amygdala of Sprague–Dawley rats
is a common model of temporal lobe epilepsy), H19 could acti-
vate this pathway, which promoted the activation of astrocytes
and microglia and the release of pro-inflammatory cytokines,
suggesting that H19 could be a potential target for the treat-
ment of epilepsy (Han et al., 2018).
Maternally expressed 3. Maternally expressed 3(MEG3)

is located at chromosome 14q32.2. MEG3 is commonly ex-
pressed in the placenta, adrenal, and brain. DNA methyltrans-
ferase family can target the promoter of MEG3 to perform its
regulation, so ubiquitin like with PHD and ring finger domains
1, pRb, and miRNA can regulate MEG3 by regulating DNMTs
(Kruer et al., 2016; Zhuo et al., 2016; Cui et al., 2018). Interest-
ingly, miRNA can also directly bind to the 30-untranslated
region of MEG3 to regulate it (Zhou et al., 2015b). Under phys-
iologic conditions, it has regulatory effects on stem cell differ-
entiation, including promoting neural differentiation of human
embryonic stem cells and osteogenic differentiation of bone
marrow mesenchymal stem cells, inhibiting chondrogenic dif-
ferentiation of synovium-derived mesenchymal stem cells
(Mo et al., 2015; You et al., 2019; Li et al., 2021). In addition,
MEG3/miR-128/Girdin can protect vascular endothelial cells
from senescence (Lan et al., 2019), and MEG3 can regulate
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the proliferation of human umbilical vein cells proliferation
through PTBP3/p53 (Shihabudeen Haider Ali et al., 2019).
As a biomarker, the SNP of MEG3 is associated with gas-

tric cancer and oral squamous cell carcinoma susceptibility
(Hou et al., 2019; Kong et al., 2020). MEG3 is a diagnostic
marker for hunner type interstitial cystitis and chronic hepa-
titis B (Chen et al., 2019a; Liu et al., 2020a). In additiona,
MEG3 functions as a diagnostic and prognostic marker in
pancreatic cancer, mammalian cancer, and other cancers (Li
et al., 2017; Ma et al., 2018).
MEG3 plays a pro-inflammatory or anti-inflammatory role

in the occurrence and development of inflammation. In pulpi-
tis, chronic pulmonary disease, and atherosclerosis, MEG3
presents a pro-inflammatory effect (Yan et al., 2019; Song
et al., 2020; Liu et al., 2021a), whereas in ulcerative colitis,
ankylosing spondylitis, and rheumatoid arthritis, MEG3 has
an anti-inflammatory effect (Li et al., 2019a; Li et al., 2020c;
Wang et al., 2021b). Pro-inflammatory MEG3 activates in-
flammasome by negatively regulating miRNA, thus promot-
ing the occurrence and development of neuroinflammation.
The five inflammasome types are AIM2, NLRP1, NLRP3,
NLRC4, and IPAF inflammasome. AIM2 and NLRP3 were
involved in cerebral ischemia reperfusion and traumatic
brain injury-induced neuroinflammation under the regula-
tion of MEG3/miR-485 and MEG3/miR-7a-5p, respectively
(Liang et al., 2020; Meng et al., 2021). Yi et al. reported that
MEG3 was down-regulated in Alzheimer's disease animal
(Sprague–Dawley rats were injected Ab25-35) and played a
protective role in disease progression. Overexpression of
MEG3 reduced the expression of p-PI3K and p-Akt. The
inhibition of the PI3K/AKT pathway inhibited activation
of astrocytes;inhibited the release of IL-1b, IL-6, and
TNF-a; inhibited oxidative stress injury; and improved
the cognitive impairment of Alzheimer’s disease rats. It
has been suggested that MEG3 may function as a thera-
peutic target for Alzheimer's disease (Yi et al., 2019).
XIST. X inactive specific transcript (XIST) is located at

chromosome Xq13.2. XIST is commonly expressed in the thy-
roid, ovary, and endometrium. Transcription factor Yin Yang
1 binds directly to the Xist 50 region to activate XIST, and
miR-7 regulates the downstream miR-92b/Slug/ESA axis by
negatively regulating XIST (Makhlouf et al., 2014; Li et al.,
2020a). Notably, m(6)A RNA methylation of XIST is required
for XIST to perform its transcriptional inhibitory function
(Patil et al., 2016). Under physiologic conditions, Xist pro-
moted the osteogenic differentiation of human bone marrow-
derived mesenchymal stem cells through miR-9-5p/ALPL
(Zheng et al., 2020). XIST inhibits Th17 cell differentiation
through miR-377-3p/ETS1 (Yao et al., 2022).
XIST is a potential diagnostic marker of triple-negative

breast cancer, colorectal cancer, and acute myocardial infarc-
tion, and 53BP1 combined with XIST is a prognostic marker
of BRCA1-like breast cancer ( Schouten et al., 2016; Yu et al.,
2020a; Lan et al., 2021; Zheng et al., 2022).
XIST plays a pro-inflammatory role in epilepsy and neuro-

pathic pain by acting as a ceRNA of miRNA. Zhang et al. ob-
served the expression of XIST and NFAT5 in CTX-TNA2
astrocyte cell line treated by LPS was significantly increased,
while the expression of miR-29c-3p was decreased. Inhibition
of miR-29c-3p or up-regulation of NFAT5 could reverse the
inhibit astrocyte activation and inflammatory-induced neuro-
nal apoptosis by XIST (Zhang et al., 2021c). It is important to

note that the inflammation regulation of NFAT5 depends on
the disease state; whether it plays a protective or damaging
role depends on different stages of epilepsy development
(Yang et al., 2018d, 2019b). XIST participated in the develop-
ment of neuropathic pain as ceRNA. It was reflected in de-
creased paw withdrawal threshold and latency and increased
level of pro-inflammatory cytokines. Therefore, XIST was con-
sidered as a potential therapeutic target for neuropathic pain
and neuroinflammation. It also functioned through XIST/miR-
150/ZEB1 and XIST/miR-544/STAT3 axis (Jin et al., 2018b;
Yan et al., 2018).
UCA1. Urothelial cancer associated 1 (UCA1), formerly reg-

istered as bladder cancer invasion-associated gene, is located
at chromosome 19p13.12. It is highly expressed in the gall
bladder, endometrium, and urinary bladder. As its name
means, UCA1 is first found in abnormally high expression on
bladder cancer tissue. Meanwhile, UCA1 is related to the pro-
gression of bladder cancer (Wang et al., 2006). The regulation
of UCA1 can be realized by transcription factors CCAAT/
enhancer-binding protein a, HIF-1a, and SP1 binding to the
UCA1 promoter. Moreover, it can be regulated by insulin-like
growth factor 2 messenger RNA binding protein. Even lncRNA
GAS8-AS1 and hsa-miR-1 can negatively regulate UCA1 ex-
pression (Wang et al., 2014, 2017b; Jin et al., 2018a; Zhou
et al., 2018c; Li et al., 2018d; Zha et al., 2020). UCA1 plays an
important regulatory role in physiologic and pathologic pro-
cesses. In a physiologic state, UCA1 regulates cell prolifera-
tion, differentiation, migration, and epithelial-mesenchymal
transition (Ishikawa et al., 2018; Liu et al., 2020b; Yu et al.,
2020c; Zhang et al., 2020c).
As a biomarker, it is mainly involved in screening, diagno-

sis, and prognosis and is related to cancer and inflammation.
In combination with H19, it is associated with the suscepti-
bility to 5-fluorouracil in rectal cancer (Yokoyama et al.,
2019). Combined with PGM5-AS1, it becomes the diagnostic
marker of early-stage colorectal cancer (Wang et al., 2021a),
and it is related to the multiple pro-inflammatory cytokines
of sepsis patients and acute stroke patients (Ren et al., 2021;
Wang et al., 2022). Furthermore, combined with NEAT1, it
predicts poor prognosis in oral squamous cell carcinoma (Zhu
et al., 2021). As an oncogenic gene, it regulates the prolifera-
tion, apoptosis, epithelial-mesenchymal transition, invasion,
metastasis, and chemoresistance of gastric cancer cell lines,
colon cancer cells, breast cancer cells, and other cancer cells
(Cao et al., 2020; Yang et al., 2021; Wo et al., 2022).
The regulatory role of UCA1 in inflammation has been clari-

fied in recent years, and its expression and inflammatory ef-
fects have ambivalent effects on different diseases. Yu et al.
reported that UCA1 was underexpressed in an epilepsy model
in vitro and in vivo. Further studies revealed that UCA1, as a
ceRNA, promoted the expression of MEF2C by adsorbing
miR-203. Notably, MEF2C was able to not only inhibit IKK
expression and IkBa phosphorylation but also inhibit phos-
phorylation of p65 Ser 536 and p65 nuclear translocation. In
addition, the UCA1/miR-203/MEF2C/NF-jB pathway could
improve IL-1b-treated CTX-TNA2 cells apoptosis and inhibit
the expression of IL-6, TNF-a and COX-2 (Xu et al., 2015; Yu
et al., 2020b). In contrast, in the Parkinson’s disease model
with injection of 6-OHDA of Wistar rats, the overexpression of
UCA1 showed a pro-inflammatory effect. UCA1 promoted the
expression of p-PI3K and p-AKT as well as the phosphoryla-
tion of IKBa and ERK, which were downstream molecules of
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the PI3K/AKT pathway. Transfection of siRNA-UCA1 up-
regulated the expression of nerve growth factor brain-
derived neurotrophic factor and decreased the levels of ma-
londialdehyde, TNF-a, IL-6, and IL-1b. It is suggested that
UCA1 may play an essential role in dopaminergic neurons
apoptosis, oxidative stress, and inflammation in Parkin-
son’s disease (Cai et al., 2019). A study has found that the
expression of UCA1 was related to the expressions of cyto-
kines including TNF-a, IL-6, and IL-17 in sepsis. In an-
other study, UCA1/EZH2/HOXA1 was found to play a
regulatory role in sepsis-induced pneumonia (Wang et al.,
2022; Zhang et al., 2022c). The expression of UCA1 is posi-
tively correlated with the cell ratio of Th17, IL-17, and IL-6
in acute ischemic stroke patients. It is speculated that
UCA1 is related to the inflammatory response in the patho-
logic process of acute ischemic stroke, and the related
mechanism needs to be further studied (Ren et al., 2021).
GM4419. Predicted gene 4419 (Gm4419) is located at chro-

mosome 12A1.3. The GM4419 expression of testis adult is
higher than other tissues. Currently, there are few studies on
GM4419.
Existing studies have shown that GM4419 was abnormally

overexpressed in diabetic nephropathy, ischemic stroke, and
traumatic brain injury and played a pro-inflammatory role in
the disease process. Gm4419 not only binded to IjBa to pro-
mote the phosphorylation of IjBa but also directly interacted
with p50, thereby promoting nuclear translocation of p65/
p50. Furthermore, the release of cytokine IL-6, TNF-a, and
IL-1b promoted the inflammation of oxygen-glucose depriva-
tion/reperfusion-treated microglial cells. Yi et al. showed that
the NFjB pathway activated by GM4419 could trigger the
activation of NLRP3 inflammasome and promote the process
of diabetic nephropathy (Wen et al., 2017; Yi et al., 2017). Yu
et al. found that Gm4419 directly inhibited miR-466l, leading

to up-regulation of TNF-a in trauma-induced astrocyte, which
was related to astrocyte apoptosis. These results suggested that
GM4419, miR-466l, TNF-a, and astrocyte apoptosis were in-
volved in the process of traumatic brain injury (Yu et al., 2017).

Clinical Significance
The clinical significance of lncRNA is that it can be used as

a biomarker for diagnosis and prognosis of disease and as a
target for disease treatment. Individual lncRNA or complexes
formed in combination with other miRNA may be effective
biomarkers of disease.
With the in-depth study of the molecular mechanism of

lncRNA production in the context of disease, lncRNA-tar-
geted therapeutic are promising. At present, lncRNA-tar-
geted drug technologies involve small molecules and gene
therapies. The mode of small molecules is to structurally
bind lncRNA specifically, destroy the spatial structure of
target lncRNA, and regulate the level of endogenous
lncRNA. Studies have shown that NP-C86 small molecule
and Rod-like DPFs ligand can respectively act on lncRNA
GAS5 and lncRNA MALAT1 (Donlic et al., 2018; Shi et al.,
2019b). Gene therapies based on clustered regularly inter-
spaced short palindrome repeats technology, antisense RNA
technology, and RNAi technology have their own unique
modes. The former system relies on sequence recognition of
single guide RNA and sequence cleavage of Cas9 enzyme,
which can act on both nuclear and cytosolic lncRNAs. Anti-
sense RNA technology involves targeting lncRNAs to activate
RNase H, which degrades target lncRNAs. The antisense
oligonucleotide drugs Nusinersen, Eteplirsen, and Inotersen
have been applied in spinal muscular atrophy, Duchenne
muscular dystrophy, and familial amyloid polyneuropathy,
respectively. RNAi is about silencing genes by siRNA. The

Fig. 2. CeRNA networks in neuroinflammation.
Among the mechanisms by which lncRNAs reg-
ulate neuroinflammation, the ceRNA network
has been studied more widely. CeRNA network
consists of lncRNA, miRNA, and mRNA. Specifi-
cally, lncRNA targets the 30-UTR of miRNA to
regulate downstream mRNA.
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siRNA drugs Onpattro and Givlaari have been used in poly-
neuropathy and acute hepatic porphyrin. Compared with
gene therapies, small molecule drugs are cheaper and easier
to administer but less selective. In contrast, gene therapy
can be largely programmed and personalized medicine. Cur-
rently, researchers are also optimizing the combination of
drug technologies and drug delivery systems.

Conclusion and Perspective
Among the 10 lncRNAs introduced in this paper, ceRNA

network is the main regulatory mechanism of neuroinflamma-
tion, (Fig. 2) and NFjB pathway is the main inflammatory
pathway involved in neuroinflammation (Fig. 3). There is a
feedback mechanism between pathologic processes. On the
one hand, neuroinflammation may be triggered by molecules
in other pathologic processes, and, on the other hand, neuroin-
flammation may induce other pathologic processes. Accumula-
tional studies on lncRNAs have shown that lncRNAs exert
non-single effects on cell functions under physiologic and path-
ologic conditions. Therefore, targeting lncRNAs related to in-
flammation can not only alleviate cell damage caused by
neuroinflammation but also improve brain function of individ-
uals with disease. At the same time, we realize that a single
drug cannot deal with multiple pathologic processes in the dis-
ease process, so exosomes containing multiple components in
combination with existing drug development technologies may
be a good therapeutic option.
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