Contents

ACCELERATED COMMUNICATIONS

173 Agonist-Dependent Phosphorylation of the Mouse δ-Opioid Receptor: Involvement of G Protein-Coupled Receptor Kinases But Not Protein Kinase C

Gang Pei Brigitte L. Kieffer, Robert J. Lefkowitz, and Neil J. Freedman

178 Pharmacological Characterization of Heterologously Expressed ATP-Gated Cation Channels (P2X Purinoceptors)

R. J. Evans, C. Lewis, G. Buell, S. Valera, R. A. North, and A. Surprenant

184 Potent and Selective Inhibition of Nitric Oxide-Sensitive Guanylyl Cyclase by 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one

John Garthwaite, Eric Southam, Caroline L. Boulton, Erik B. Nielsen, Kurt Schmidt, and Bernd Mayer

189 Antisense Oligodeoxynucleotide to the G12 Protein α Subunit Sequence Inhibits an Opioid-Induced Increase in the Intracellular Free Calcium Concentration in ND8–47 Neuroblastoma × Dorsal Root Ganglion Hybrid Cells

Tianlai Tang, Juliann G. Kiang, Thomas E. Côté, and Brian M. Cox

194 α-Conotoxin Imi Exhibits Subtype-Specific Nicotinic Acetylcholine Receptor Blockade: Preferential Inhibition of Homomeric α7 and α9 Receptors

David S. Johnson, Jennifer Martinez, Ana B. Elgoyhen, Stephen F. Heinemann, and J. Michael McIntosh

Continued
ARTICLES

200 Increased Basal Phosphorylation of the Constitutively Active Serotonin 2C Receptor Accompanies Agonist-Mediated Desensitization

206 Regulation of β₂-Adrenergic Receptor mRNA and Gene Transcription in Rat C₆ Glioma Cells: Effects of Agonist, Forskolin, and Protein Synthesis Inhibition

212 Hormonal and Cell Density Regulation of Hepatic γ-Glutamylcysteine Synthetase Gene Expression

219 Human Brain-Specific ¹-Proline Transporter: Molecular Cloning, Functional Expression, and Chromosomal Localization of the Gene in Human and Mouse Genomes

230 5-Hydroxytryptamine₂A Receptors Expressed in Rat Renal Mesangial Cells Inhibit Cyclic AMP Accumulation

238 Analysis of Eukaryotic Topoisomerase II Cleavage Sites in the Presence of the Quinolone CP-115,953 Reveals Drug-Dependent and -Independent Recognition Elements

250 KMD-3213, a Novel, Potent, α₁ₐ-Adrenoceptor-Selective Antagonist: Characterization Using Recombinant Human α₁-Adrenoceptors and Native Tissues

259 Characterization of Phorbol Ester Binding to Protein Kinase C Isotypes

268 The Low Efficacy γ-Aminobutyric Acid Type A Agonist 5-(4-Piperidyl)isoxazol-3-ol Opens Brief Cl⁻ Channels in Embryonic Rat Olfactory Bulb Neurons

280 Characterization of (±)-[³H]Epibatidine Binding to Nicotinic Cholinergic Receptors in Rat and Human Brain

288 Mead Ethanolamide, a Novel Eicosanoid, Is an Agonist for the Central (CB1) and Peripheral (CB2) Cannabinoid Receptors

Continued
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>Agonist-Mediated Activation of Phosphatidylcholine-Specific Phospholipase C and D in Intestinal Smooth Muscle</td>
<td>Karnam S. Murthy and Gabriel M. Makhlouf</td>
</tr>
<tr>
<td>316</td>
<td>Analysis of the Role of Receptor Number in Defining the Intrinsic Activity and Potency of Partial Agonists in Neuroblastoma × Glioma Hybrid NG108–15 Cells Transfected to Express Differing Levels of the Human β₂-Adrenoceptor</td>
<td>David J. MacEwan, Gun Do Kim, and Graeme Milligan</td>
</tr>
<tr>
<td>334</td>
<td>Characterization of Drug Resistance Mediated via the Suppression of Apoptosis by Abelson Protein Tyrosine Kinase</td>
<td>Rachel S. Chapman, Anthony D. Whetton, Christine M. Chresta, and Caroline Dive</td>
</tr>
<tr>
<td>352</td>
<td>Activation of the Human Peripheral Cannabinoid Receptor Results in Inhibition of Adenylyl Cyclase</td>
<td>Deborah M. Slipetz, Gary P. O'Neill, Leonard Favreau, Claude Dufresne, Michel Gallant, Yves Gareau, Daniel Guay, Marc Labelle, and Kathleen M. Metters</td>
</tr>
<tr>
<td>362</td>
<td>Detection, Quantitation, and Verification of Allosteric Interactions of Agents with Labeled and Unlabeled Ligands at G Protein-Coupled Receptors: Interactions of Strychnine and Acetylcholine at Muscarinic Receptors</td>
<td>Sebastian Lazareno and Nigel J. M. Birdsall</td>
</tr>
</tbody>
</table>