MOLECULAR PHARMACOLOGY

Contents

ACCELERATED COMMUNICATIONS

443 Piperonyl Butoxide and Acenaphthylene Induce Cytochrome P450 1A2 and 1B1 mRNA in Aromatic Hydrocarbon-Responsive Receptor Knock-Out Mouse Liver

Doug-Young Ryu, Patricia E. Levi, Pedro Fernandez-Salguesco, Frank J. Gonzalez, and Ernest Hodgson

447 Functional Selectivity of Orphanin FQ for Its Receptor Coexpressed with Potassium Channel Subunits in Xenopus laevis Oocytes

Hans Matthes, Elizabeth P. Seward, Brigitte Kieffer, and R. Alan North

ARTICLES

451 Structural Requirements of Sphingosylphosphocholine and Sphingosine-1-phosphate for Stimulation of Activator Protein-1 Activity

Alvin Berger, Robert Bittman, Richard R. Schmidt, and Sarah Spiegel

458 Pharmacological Properties of γ-Aminobutyric AcidA Receptors from Acutely Dissociated Rat Dentate Granule Cells

Jaideep Kapur and Robert L. Macdonald

467 A Fully Active Nonglycosylated V2 Vasopressin Receptor

Giulio Innamorati, Hamid Sadeghi, and Mariel Birnbaumer

474 Role of Heme in Cytochrome P450 Transcription and Function in Mice Treated with Lead Acetate

R. Jover, R. L. P. Lindberg, and U. A. Meyer

Continued
BIBW22 BS, Potent Multidrug Resistance-Reversing Agent, Binds Directly to P-Glycoprotein and Accumulates in Drug-Resistant Cells

Constitutive Activation of a Phosphoinositidase C-Linked G protein in Murine Fibroblasts Decreases Agonist-Stimulated Ca2+ Mobilization

\(\text{d-Penicillamine Causes Free Radical-Dependent Inactivation of Activator Protein-1 DNA Binding}\)

Calcineurin Mutants Render T Lymphocytes Resistant to Cyclosporin A

Hydrophilic Side Chains in the Third and Seventh Transmembrane Helical Domains of Human \(A_{2A}\) Adenosine Receptors Are Required for Ligand Recognition

Angiotensin II Type 1 Receptor Signals through Raf-1 by a Protein Kinase C-Dependent, Ras-Independent Mechanism

Studies on \(\alpha_{\beta_2}\)/Ligand Interactions Using a \[^{(H)}SK&F-107260\] Binding Assay

Trans-activation by the Human Aryl Hydrocarbon Receptor and Aryl Hydrocarbon Receptor Nuclear Translocator Proteins: Direct Interactions with Basal Transcription Factors

Cyclic AMP-Dependent Phosphodiesterase Isozyme-Specific Potentiation by Protein Kinase C in Hypertrophic Cardiomyopathic Hamster Hearts

Okadaic Acid Potentiates 3-Methylcholanthrene-Induced CYP2A8 Gene Expression in Primary Cultures of Syrian Hamster Hepatocytes: Possible Involvement of AP-1

Ontogenic and Hormonal Bases of Male-Dominant Rat Hepatic Sulphotransferases

Cytochrome P450 2E1 Is a Cell Surface Autoantigen in Halothane Hepatitis

Morphine Down-regulates Melanocortin-4 Receptor Expression in Brain Regions that Mediate Opiate Addiction
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>592</td>
<td>Quinone Thioether-Mediated DNA Damage, Growth Arrest, and \textit{gadd453} Expression in Renal Proximal Tubular Epithelial Cells</td>
<td>Jeongmi K. Jeong, James L. Stevens, Serrine S. Lau, and Terrence J. Monks</td>
</tr>
<tr>
<td>599</td>
<td>The Stimulatory Effect of Opioids on Mitogen-Activated Protein Kinase in Chinese Hamster Ovary Cells Transfected to Express (\mu)-Opioid Receptors</td>
<td>Ling-Yuan Li and Kwen-Jen Chang</td>
</tr>
<tr>
<td>603</td>
<td>Biochemical and Pharmacological Activity of Novel 8-Fluoroanthracyclines: Influence of Stereochemistry and Conformation</td>
<td>Fabio Animati, Federico Arcamone, Mario Bigioni, Giovanni Capranico, Claudia Caserini, Michelandrea De Cesare, Paolo Lombardi, Grazella Pratesi, Carmela Salvatore, Rosanna Supino, and Franco Zunino</td>
</tr>
<tr>
<td>610</td>
<td>Induction of Apoptosis by Benzene Metabolites in HL60 and CD34 Human Bone Marrow Progenitor Cells</td>
<td>Julie L. Moran, David Siegel, Xiao-Ming Sun, and David Ross</td>
</tr>
<tr>
<td>616</td>
<td>(N)-Palmitoyl-serine and (N)-Palmitoyl-tyrosine Phosphoric Acids Are Selective Competitive Antagonists of the Lysophosphatidic Acid Receptors</td>
<td>Károly Liliom, Robert Bittman, Bernadette Swords, and Gábor Tigyi</td>
</tr>
<tr>
<td>624</td>
<td>Direct Evidence for Functional Coupling of the Vasoactive Intestinal Peptide Receptor to (G_{13}) in Native Lung Membranes</td>
<td>Nicole L. Diehl, John C. Kermode, and S. Martin Shreeve</td>
</tr>
<tr>
<td>631</td>
<td>Use of Subunit-Specific Antisense Oligodeoxynucleotides to Define Developmental Changes in the Properties of (N)-Methyl-(d)-aspartate Receptors</td>
<td>Jie Zhong, Valentin K. Gribkoff, and Perry B. Molinoff</td>
</tr>
<tr>
<td>639</td>
<td>Interactions of Oxime Reactivators with Diethylphosphoryl Adducts of Human Acetylcholinesterase and Its Mutant Derivatives</td>
<td>Haim Grosfeld, Dov Barak, Arie Ordentlich, Baruch Velan, and Avigdor Shafferman</td>
</tr>
<tr>
<td>650</td>
<td>The (\mu)-Opioid Receptor Antagonist (d)-Phe-Cys-Tyr-(d)-Trp-Orn-Thr-Pen-Thr-NH(_2) (CTOP) ([\text{but not } d)-Phe-Cys-Tyr-(d)-Trp-Arg-Thr-Pen-Thr-NH(_2) (CTAP)]) Produces a Nonopioid Receptor-Mediated Increase in (K^+) Conductance of Rat Locus Ceruleus Neurons</td>
<td>Billy Chieng, Mark Connor, and Macdonald J. Christie</td>
</tr>
<tr>
<td>656</td>
<td>Detection of (\alpha)-Hydroxyethyl Free Radical Adducts in the Pancreas after Chronic Exposure to Alcohol in the Rat</td>
<td>Yuji Iimuro, Blair U. Bradford, Wenshi Gao, Maria Kadiiska, Ronald P. Mason, Branko Stefanovic, David A. Brenner, and Ronald G. Thurman</td>
</tr>
<tr>
<td>662</td>
<td>Agonist-Induced Modulation of Inverse Agonist Efficacy at the (\beta_2)-Adrenergic Receptor</td>
<td>Peter Chidiac, Sandrine Nouet, and Michel Bouvier</td>
</tr>
</tbody>
</table>
CONTENTS (cont'd)

670 Functional Characterization of Human γ-Aminobutyric AcidA Receptors Containing the α4 Subunit K. A. Wafford, S. A. Thompson, D. Thomas, J. Sikela, A. S. Wilcox, and P. J. Whiting

687 Mercury Binding Site on Na+/K-ATPase: A Cysteine in the First Transmembrane Segment Xinyu Wang and Jean-Daniel Horisberger

692 Repetitive Endocytosis and Recycling of the β2-Adrenergic Receptor during Agonist-Induced Steady State Redistribution Keith J. Morrison, Robert H. Moore, N. D. Victor Carsrud, Joann Trial, Ellen E. Millman, Michael Tuvim, Richard B. Clark, Roger Barber, Burton F. Dickey, and Brian J. Knoll

Visit Molecular Pharmacology on the World-Wide Web at:
http://www.wwilkins.com/molec_pharm/

About the cover: Targeting of δ-opioid receptor to surface membranes. COS-1 cells were transfected with a mouse δ-opioid receptor mutant (D128A), for which the conserved aspartate in the third membrane domain is replaced by alanine. Cells were double-labeled with fluorescein-conjugated concanavalin A to label the plasma membrane (green) and with an anti-δ-opioid receptor antibody followed by rhodamine-conjugated streptavidin (red). Yellow shows the region of colocalization. This mutant exhibited reduced expression and subtle changes in its ability to bind certain agonist ligands. From Befort, K., L. Tabbara, S. Bausch, C. Chavkin, C. Evans, and B. Kieffer. The conserved aspartate residue in the third putative transmembrane domain of the δ-opioid receptor is not the anionic counterpart for cationic opiate binding but is a constituent of the receptor binding site. Mol. Pharmacol. 49: 216–223 (1996).