Correction to "Characterization of human $\alpha 4\beta 2$ -nicotinic acetylcholine receptors stably and heterologously expressed in native nicotinic receptor-null SH-EP1 human epithelial cells"

In the above article [Eaton JB, Peng J-H, Schroeder KM, George AA, Fryer JD, Krishnan C, Buhlman L, Kuo Y-P, Steinlein O, and Lukas RJ (2003) *Mol Pharmacol* **64:**1283–1294], Table 3 was incorrect due to printing errors. The corrected table appears below.

We regret this error and apologize for any confusion or inconvenience it may have caused.

TABLE 3 Parameters for interactions of indicated drugs with $h\alpha 4\beta 2$ -nAChR in transfected SH-EP1 cells

Results presented in Figs. 6 to 9 and in Tables 1 and 2 are summarized. Functional EC_{50} values for agonists (column 2), functional IC_{50} values for antagonists (column 3; functional IC_{50} values given in parentheses for nicotine and suberyldicholine from fits to the self-inhibitory phase of agonist dose-response profiles for those drugs), and $[^3H]EBDN$ binding competition K_i values (column 4), all in micromolar, are expressed to allow comparisons between functional and radioligand binding competition affinities for the indicated ligands (drug; column 1). Also indicated (F/B; column 5) is the ratio between the functional EC_{50}/IC_{50} and the binding competition K_i value (based on the IC_{50} value but corrected for the concentration of H-EBDN used in those assays and for the H-EBDN binding K_D of 10 pM using the Cheng-Prusoff correction) for each ligand. The notations following the drug name for selected ligands indicate, from results shown in Fig. 9, functional antagonism actions as a noncompetitive inhibitor (N/C), or a mixed competitive/noncompetitive inhibitor (N/C).

Drug	Functional		Binding Competition	7.0
	EC_{50}	${ m IC}_{50}$	$K_{\rm i}$	F/B
	μM		μM	
Epibatidine	0.0085		0.000012	710
Nicotine	0.85	(5800)	0.0020	430
Cytisine	1.3		0.00024	5400
Suberyldicholine	1.3	360 (200)	0.013	100
Acetylcholine	1.7		0.018	94
Dimethyl-phenyl-piperazinium	1.9		0.020	95
Carbamylcholine	17		0.15	110
Acetylthiocholine	100		0.17	590
Choline	\sim 3800		7.0	>540
Lobeline		21	0.0019	11,000
Succinylcholine		≫1000	2.9	>340
Decamethonium C		300	1.3	230
D-tubocurarine N/C		62	2.0	31
Dihydro-β-erythroidine C		1.5	0.085	18
Methyllycaconitine C		6.6	2.3	2.8
Eserine N		130	> 24	< 5.4
Vecuronium		28	24	1.2
Alcuronium		26	19	1.4
Pancuronium N/C		91	57	1.6
Hexamethonium N/C		11	45	0.24
Mecamylamine N		0.47	\gg 24	< 0.02

Downloaded from molpharm.aspetjournals.org at ASPET Journals on April 10, 2024