Regulation of Human Vitamin D₃ 25-Hydroxylases in Dermal Fibroblasts and Prostate Cancer LNCaP Cells

Maria Ellfolk, Maria Norlin, Katarina Gyllensten, and Kjell Wikvall

Department of Pharmaceutical Biosciences, Division of Biochemistry, University of Uppsala, Uppsala, Sweden (M.E., M.N., K.W.); and Infectious Disease Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden (K.G.)

Received November 24, 2008; accepted March 11, 2009

ABSTRACT

In this study, we examined whether 1α,25-dihydroxyvitamin D₃ (calcitriol), phenobarbital, and the antiretroviral drug efavirenz, drugs used by patient groups with high incidence of low bone mineral density, could affect the 25-hydroxylase activity or expression of human 25-hydroxylases in dermal fibroblasts and prostate cancer LNCaP cells. Fibroblasts express the 25-hydroxylation enzymes CYP2R1 and CYP27A1. LNCaP cells were found to express two potential vitamin D 25-hydroxylases—CYP2R1 and CYP2J2. The presence in different cells of nuclear receptors vitamin D receptor (VDR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR) was also determined. Phenobarbital suppressed the expression of CYP2R1 in fibroblasts and CYP2J2 in LNCaP cells. Efavirenz suppressed the expression of CYP2R1 in fibroblasts but not in LNCaP cells. CYP2J2 was slightly suppressed by efavirenz, whereas CYP27A1 was not affected by any of the two drugs. Calcitriol suppressed the expression of CYP2R1 in both fibroblasts and LNCaP cells but had no clear effect on the expression of either CYP2J2 or CYP27A1. The vitamin D₃ 25-hydroxylase activity in fibroblasts was suppressed by both calcitriol and efavirenz. In LNCaP cells, consumption of substrate (1α-hydroxyvitamin D₃) was used as indicator of metabolism because no 1α,25-dihydroxyvitamin D₃ product could be determined. The amount of 1α-hydroxyvitamin D₃ remaining in cells treated with calcitriol was significantly increased. Taken together, 25-hydroxylation of vitamin D₃ was suppressed by calcitriol and drugs. The current results may offer a possible explanation for the impaired bone health after treatment with certain drugs.

The metabolic activation of vitamin D is initiated by 25-hydroxylation of the side chain followed by a 1α-hydroxylation. 1α,25-Dihydroxyvitamin D₃ (calcitriol), the biologically most active form of vitamin D₃, is known as a calcium-regulating hormone but is involved also in other processes such as modulation of the immune system and cell proliferation and differentiation. At the moment, at least four enzymes capable of 25-hydroxylation of vitamin D₃ and/or vitamin D₂ have been described in humans, including the mitochondrial CYP27A1 and the microsomal CYP2R1, CYP2J2, and CYP3A4 (Ohyama and Yamasaki, 2004; Prosser and Jones, 2004). CYP3A4 is reported to prefer the nonphysiological form vitamin D₂ over vitamin D₃ (Gupta et al., 2004). Thus, several possible candidates for a vitamin D₃ 25-hydroxylase have been suggested; from a regulatory perspective, however, the physiological roles of these proposed 25-hydroxylases remain poorly defined. In this context, it is interesting that vitamin D₃ 25-hydroxylation occurs also in certain extrahepatic tissues (e.g., the prostate). Regulation of human vitamin D₃ 25-hydroxylation may be particularly important in extrahepatic tissues and might be a means of controlling cellular levels of 25-hydroxyvitamin D₃ and 1α,25-dihydroxyvitamin D₃. This might influence cell function because these vitamin D₃ metabolites are reported to be active hormones in human prostate cells and to have antiproliferative properties (Lou et al., 2004; Tokar and Webber, 2005).

In previous studies, both vitamin D metabolites and drugs affecting bone health have been shown to affect the promoter of the porcine vitamin D 25-hydroxylase, CYP2D25, in liver-derived HepG2 cells (Ellfolk et al., 2006; Hosseinpoor et al., 2007). In the present study, the expression and regulation of human 25-hydroxylating enzymes are examined in dermal fibroblasts and prostate cancer LNCaP cells. The effects on gene expression and endogenous 25-hydroxylase enzyme ac-
tivity by 1α,25-dihydroxyvitamin D₃ and the drugs phenobarbital and efavirenz are examined. Phenobarbital is an antiepileptic drug, often used in combination with other drugs. Efavirenz is an antiretroviral drug, always used in combination therapy. High incidence of low bone mineral density is a concern for patients using antiepileptic drugs and for patients infected with HIV.

Materials and Methods

Materials. A dermal fibroblast cell line (BJ strain) and the prostate cancer cell line LNCaP were purchased from American Type Culture Collection (Manassas, VA). 1α-Hydroxyvitamin D₃ was a gift from Leo Pharmaceuticals (Ballerup, Denmark). Cell cultivation media, fetal bovine serum, nonessential amino acids, antibiotics, and sodium pyruvate were purchased from InVitrogen (Carlsbad, CA). Efavirenz was a gift from Dr. Filip Josephson (Karolinska Institutet, Stockholm, Sweden). 1α,25-Dihydroxyvitamin D₃ was obtained from Solvay (Duphar, The Netherlands). 24R,25-Dihydroxy [23,24(n)-³H]cholecalciferol was purchased from GE Healthcare (Chalfont St. Giles, Buckinghamshire, UK). RNase Mini Kit and RNase-free DNase set were purchased from Qiagen (Valencia, CA) and the Reverse Transcription Kit from Promega (Madison, WI). The SYBR Green Master Mix, TaqMan Master mix, and TaqMan probes were purchased from Applied Biosystems (Foster City, CA). The PCR primers for semiquantitative PCR were obtained from Thermo Fischer Scientific GmbH (Ulm, Germany).

Cell Culture. Dermal fibroblast cells (BJ) were cultured in minimal essential medium supplemented with 10% fetal bovine serum, 1% non essential amino acids, 1% antibiotic-antimycotic and 1% sodium pyruvate. LNCaP cells were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. Both types of cells were grown in 5% CO₂ at 37°C. The cells were seeded the day before treatment and were kept in their growth medium overnight.

Treatment of Cells. Cells were treated with either calcitriol (0.1 nM), phenobarbital (1.5 mM), or efavirenz (2.5 μg/ml) for 24 h before extraction of total RNA or addition of 1α-hydroxyvitamin D₃. The treatments were carried out in serum-free media. 1α,25-Dihydroxyvitamin D₃ and efavirenz were dissolved in 99% ethanol. After incubation for 24 or 48 h (LNCaP and fibroblasts, respectively), the cells were harvested, and medium was collected for analysis for 1,25-dihydroxyvitamin D₃. The endogenous control was glyceraldehyde-3-phosphate dehydrogenase. LNCaP RNA was used as positive control. In cells treated with vehicle only, the C₅ values for CYP27A1 were 30.2 ± 0.6 (fibroblasts) and for CYP2J3 30.8 ± 0.8 (LNCaP cells).

Assay of Vitamin D₃ 25-Hydroxylase Activity. Endogenous vitamin D₃ 25-hydroxylase activity in fibroblasts and LNCaP cells in the presence of either 1,25-dihydroxyvitamin D₃ or efavirenz was measured by incubation with 1α-hydroxyvitamin D₃ (0.85 μM) dissolved in dimethyl sulfoxide. After incubation for 24 or 48 h (LNCaP and fibroblasts, respectively), the cells were harvested, and medium was collected for analysis of 1,25-dihydroxyvitamin D₃ and 1α-hydroxyvitamin D₃. Medium collected from the plates was extracted with ethyl acetate (5 ml of ethyl acetate/1.5 ml of medium). To control extraction efficiency (recovery) 24R,25-dihydroxy [23,24(n)-³H]cholecalciferol was added to the plates before the medium was collected.

HPLC. Vitamin D metabolites were analyzed on straight-phase HPLC-UV at the wavelength 265 nm. The mobile phase used was: Applied Biosystems Hs00356035_m1 and Hs00168003_m1, respectively) and Eukaryotic 18S rRNA (Applied Biosystems Hs99999901_s1) was used as endogenous control. Human liver mRNA was used as positive control. In cells treated with vehicle only, the C₅ values for CYP27A1 were 27.4 ± 0.4 (fibroblasts) and 25.4 ± 0.6 (LNCaP cells).

Targets and controls were amplified in triplicates as singleplex assays. All expression data were normalized to the standard curve method as described by Applied Biosystems. Standard curves were generated by serial 5-fold dilutions of the cDNA of the positive control.

Analysis of Vitamin D Receptor, Pregnan X Receptor, and Constitutive Androstane Receptor Expression. Analysis of endogenous VDR, PXR, and CAR expression in fibroblasts (BJ strain) and LNCaP cells was carried out by real-time RT-PCR. The primers used were those described for semiquantitative RT-PCR. The primers used were described for CYP2J3 forward primer (Nishimura et al., 2002), and for the CYP2J3 reverse primer (Marden et al., 2003). The CYP2R1 primers were those found in Primer Bank (http://pga.mgh.harvard.edu/primerbank/index.html; Wang and Seed, 2003). The forward primer is the forward primer of primer pair 1 (Primer Bank ID 33591222a1) and the reverse primer is the reverse primer from primer pair 2 (Primer Bank ID 33591222a3). The primers for CYP3A4 were those described previously (Hakkola et al., 1996). The primers for CYP27A1 were as follows: forward, 5′-AGT ACG GAA CGA CAT GGA GC-3′ and reverse, 5′-GCA GAG TCT TAA GCA CAG C-3′ (Garuti et al., 1996). Glyceraldehyde-3-phosphate dehydrogenase was used as internal control. The PCR cycles were as follows: 95°C for 10 min, and then 35 cycles of denaturation (1 min at 94°C), annealing (1 min at 60°C), and extension (1 min at 72°C), followed by a final extension for 10 min at 72°C.

Quantification of CYP2J3, CYP2R1, and CYP27A1 mRNA by Real-Time RT-PCR. Quantitation of CYP2J3, CYP2R1, and CYP27A1 mRNA in fibroblasts and LNCaP cells was performed by real-time RT-PCR using a Bio-Rad iCycler, according to the manufacturer’s recommendations.

TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>CYP2J3</th>
<th>CYP2R1</th>
<th>CYP3A4</th>
<th>CYP27A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BJ</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>HepG2</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>LNCaP</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>RWPE-1</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

+, expression; −, no expression.
Statistical Analysis. Statistical analysis was performed using one-way analysis of variance. P values < 0.05 were considered statistically significant.

Results

Expression of Human 25-Hydroxylases in Different Cultured Human Cell Lines. Different cell lines were tested for the expression of the human vitamin D 25-hydroxylases CYP2J2, CYP2R1, CYP3A4, and CYP27A1. The cell lines examined were the human dermal fibroblast cell line BJ, human hepatoma cell line HepG2, the prostate cancer cell line LNCaP, and the prostate cell line RWPE-1. Human liver mRNA was used as a positive control, showing expression of all four 25-hydroxylating enzymes. CYP2J2 was expressed in HepG2 and LNCaP cells, CYP2R1 was expressed in fibroblasts and LNCaP cells, CYP3A4 was expressed in HepG2 cells, and CYP27A1 was found in fibroblasts and HepG2 cells. Prostate RWPE cells showed no or very low expression of the 25-hydroxylases (Table 1). The human fibroblast cell line (BJ strain) and prostate cancer LNCaP cells were considered particularly useful for studies on regulation of human vitamin D3 25-hydroxylases.

Expression of VDR, PXR, and CAR in Human Dermal Fibroblasts and Prostate Cancer LNCaP Cells. Experiments were also performed to examine the expression in fibroblasts and LNCaP cells of VDR, PXR, and CAR, receptors of relevance for regulation of the vitamin D 25-hydroxylating cytochrome P450 enzymes. VDR is involved in regulation of gene expression by 1α,25-dihydroxyvitamin D3, and PXR and CAR are involved in gene regulation by xenobiotics.

Fig. 1. Levels of CYP2R1 and CYP2J2 mRNA expression in LNCaP cells (A) and levels of CYP2R1 and CYP27A1 mRNA expression in fibroblast BJ cells (B) after 24 h of phenobarbital (PB) treatment. The cells were treated with 1.5 mM PB that was dissolved directly into the growth medium. Untreated cells received growth medium. After 24 h of treatment, RNA was extracted, and the mRNA levels were determined using real-time RT-PCR. The mRNA levels are shown as -fold change compared with untreated cells. In cells treated with vehicle only, the Ct values for CYP2R1 mRNA were 27.4 ± 0.4 (fibroblasts) and 25.4 ± 0.6 (LNCaP cells); for CYP27A1, 30.2 ± 0.6 (fibroblasts); and for CYP2J2, 30.8 ± 0.8 (LNCaP cells). Data are given as mean ± S.D. (n = 3–6); statistically significant difference (***, P < 0.001).
Both cell lines expressed VDR, indicating that vitamin D metabolites may affect the regulation of vitamin D-sensitive genes in these cells. CAR was not expressed in any of the cell lines. PXR was expressed only in the fibroblasts, indicating that genes expressed in fibroblasts might be more sensitive to regulation by xenobiotics than genes in LNCaP cells (results not shown).

Effects of Phenobarbital on the mRNA Levels of Human Vitamin D 25-Hydroxylases. In a previous study, using the pig as model, we reported direct effects by phenobarbital on the expression of CYP27A1 and CYP2D25, two important 25-hydroxylases. In the current study, the effects of phenobarbital treatment on human vitamin D₃ 25-hydroxylases were studied in prostate cancer LNCaP cells and dermal fibroblasts.

LNCaP cells were treated with phenobarbital (1.5 mM) to study its effects on the mRNA expression of the two vitamin D 25-hydroxylases CYP2J2 and CYP2R1. Phenobarbital significantly suppressed the expression of CYP2J2 by approximately 50%, whereas CYP2R1 expression was unaffected in this cell line (Fig. 1A). Fibroblasts were treated with phenobarbital in the same way to study its effects on the mRNA expression of the two vitamin D 25-hydroxylases CYP2R1 and CYP27A1. Phenobarbital significantly suppressed the expression of CYP2R1 by approximately 35%, whereas CYP27A1 expression was unaffected (Fig. 1B).

![Fig. 2. Levels of CYP2R1 and CYP2J2 mRNA in LNCaP cells (A) and levels of CYP2R1 and CYP27A1 mRNA in fibroblast BJ cells (B) after 24 h of treatment with efavirenz (efz). The cells were treated with 2.5 μg/ml efz that was dissolved in 99% ethanol. Untreated cells received 99% ethanol. After 24 h of treatment, RNA was extracted, and the mRNA levels were determined using real-time RT-PCR. The mRNA levels are shown as -fold change compared with untreated cells. In cells treated with vehicle only, the Cₚ values for CYP2R1 mRNA were 27.4 ± 0.4 (fibroblasts) and 25.4 ± 0.6 (LNCaP cells); for CYP27A1, 30.2 ± 0.6 (fibroblasts); and for CYP2J2, 30.8 ± 0.8 (LNCaP cells). Data are given as mean ± S.D. (n = 3–6); statistically significant difference (*, P < 0.05; **, P < 0.001).]
Effects of Efavirenz on the mRNA Levels of Human Vitamin D 25-Hydroxylases. LNCaP cells were treated with the antiretroviral drug efavirenz to study its effects on the mRNA expression of CYP2J2 and CYP2R1. Efavirenz significantly suppressed the levels of CYP2J2 by 25% (Fig. 2A). Fibroblasts were treated with efavirenz in the same way to study its effect on the expression of CYP2R1 and CYP27A1. Efavirenz significantly suppressed CYP2R1 mRNA expression in fibroblasts by approximately 60%, whereas CYP27A1 did not respond to this treatment (Fig. 2B). It may be concluded that efavirenz suppresses CYP2R1 mRNA expression in fibroblasts but not in LNCaP cells. This difference in regulation by efavirenz on CYP2R1 is correlated with expression of PXR in fibroblasts but not in LNCaP cells.

Effects of 1α,25-Dihydroxyvitamin D₃ on the mRNA Levels of Human Vitamin D 25-Hydroxylases. LNCaP cells were treated with the active vitamin D metabolite 1α,25-dihydroxyvitamin D₃ to study its effects on the mRNA expression of CYP2J2 and CYP2R1. 1α,25-Dihydroxyvitamin D₃ significantly suppressed CYP2R1 by approximately 50%, whereas it had no clear effect on the levels of CYP2J2 (Fig. 3A). Fibroblasts were treated with 1α,25-dihydroxyvitamin D₃ in the same way to study its effect on the expression of CYP2R1 and CYP27A1. 1α,25-Dihydroxyvitamin D₃ significantly suppressed the expression of CYP2R1 by approximately 50%, whereas CYP27A1 expression was only slightly suppressed by the vitamin D metabolite (Fig. 3B). The results indicate that 1α,25-dihydroxyvitamin D₃ down-regu-

![Fig. 3. Levels of CYP2R1 and CYP2J2 mRNA in LNCaP cells (A) and levels of CYP2R1 and CYP27A1 mRNA in fibroblast BJ cells (B) after 24 h of treatment with 1α,25-dihydroxyvitamin D₃ (1,25D₃ [calcitriol]). The cells were treated with 0.1 nM 1,25D₃ that was dissolved in 99% ethanol. Vehicle-treated cells received 99% ethanol. After 24 h of treatment, RNA was extracted, and the mRNA levels were determined using real-time RT-PCR. The mRNA levels are shown as -fold change compared with vehicle-treated cells. In cells treated with vehicle only, the Ct values for CYP2R1 mRNA were 27.4 ± 0.4 (fibroblasts) and 25.4 ± 0.6 (LNCaP cells); for CYP27A1, 30.2 ± 0.6 (fibroblasts); and for CYP2J2, 30.8 ± 0.8 (LNCaP cells). Data are given as mean ± S.D. (n = 3–6); statistically significant difference (*, P < 0.05; **, P < 0.01).]
lates the expression of CYP2R1 in fibroblasts and LNCaP cells, both cell types expressing VDR.

Effects of Efavirenz on the Vitamin D 25-Hydroxylase Activity in Fibroblasts. On incubating cultured fibroblasts with 1α-hydroxyvitamin D₃ as substrate, 25-hydroxylation could be determined by the appearance of the product 1α,25-dihydroxyvitamin D₃. The treatment concentration of efavirenz (2.5 μg/ml) is within the therapeutic window (1–4 mg/liter) (Marzolini et al., 2001). The production of 1α,25-dihydroxyvitamin D₃ was suppressed approximately 30% by efavirenz (Fig. 4A). The suppression by efavirenz was statistically significant. Efavirenz was not used as treatment for experiments on enzyme activity in prostate cancer LNCaP cells because its effects on the mRNA levels of the two 25-hydroxylases present in LNCaP cells as described above were found to be marginal.

Effects of 1α,25-Dihydroxyvitamin D₃ on the Vitamin D 25-Hydroxylase Activity in Fibroblasts. The 25-hydroxylase activity in fibroblasts was determined by assay of the product 1α,25-dihydroxyvitamin D₃. The treatment concentration of 1α,25-dihydroxyvitamin D₃ is within the physiological range (0.1 nM). This concentration of 1α,25-dihydroxyvitamin D₃ corresponds to 0.12 ng in the culture plates used. This amount is not detectable in HPLC analysis and thus does not interfere with assay of 25-hydroxylase activity. The 25-hydroxylase activity was slightly suppressed in fibroblasts by 1α,25-dihydroxyvitamin D₃ (Fig. 4B).

Metabolism of 1α-Hydroxyvitamin D₃ in LNCaP Cells. In incubations of LNCaP cells with 1α-hydroxyvitamin D₃ no 1α,25-dihydroxyvitamin D₃ could be detected. Instead consumption of substrate was used as a way to assay metabolism of 1α-hydroxyvitamin D₃, which is known to undergo
25-hydroxylation as the first step. Treatment with 1α,25-
dihydroxyvitamin D3 decreased the consumption of the sub-
strate compared with the control (treatment with vehicle)
(Fig. 5). In the presence of ethanol (vehicle), only 6% of the
substrate could be detected after 24 h. However, in the pre-

cence of 1α,25-dihydroxyvitamin D3, approximately 17% of the
substrate remained after 24 h, indicating decreased metab-
olism. The results are statistically significant.

The LNCaP cells express two vitamin D 25-hydroxylases
(CYP2R1 and CYP2J2) as well as the catabolism enzyme,
CYP24A1. This enzyme metabolizes the 25-hydroxylated
product, 1α,25-dihydroxyvitamin D3, to more polar com-
pounds. The results of these experiments may be influenced
by further metabolism by CYP24A1. However, we believe
that the major part of the substrate consumption observed in
our experiments should reflect the initial 25-hydroxylation.
These results indicate that the mechanism of 1α-hydroxyvi-
tamin D3 in LNCaP cells can be suppressed in the presence of
physiological concentrations of 1α,25-dihydroxyvitamin D3.

Discussion

In previous studies, vitamin D metabolites and phenobar-

bital, a drug affecting bone health, have been found to sup-
press the promoter activity of the porcine vitamin D 25-
hydroxylase, CYP2D25 (Ellfolk et al., 2006; Hosseinipour et
al., 2007). In this study, we report that phenobarbital and the

tanti-retroviral drug efavirenz, as well as the active hormone
1α,25-dihydroxyvitamin D3 (calcitriol), suppress the expres-
sion levels also of human 25-hydroxylating enzymes. In hu-
mans, several possible candidates for vitamin D3 or vitamin
D3 25-hydroxylase have been suggested, including CYP27A1
(Theodoropoulos et al., 2003), CYP2R1 (Cheng et al., 2003),
CYP2J2 (Aiba et al., 2006), and CYP3A4 (Gupta et al., 2004).
In recent years, the bioactivation of vitamin D3 in extrahe-

![Image](https://atlas.confex.com/atlas/webapp/Abstract/socialimage/S63_51754.jpg)

Fig. 5. Amount of substrate (1α-D3) remaining after 6, 12, and 24 h of incubation in LNCaP cells treated with 1,25D3 or ethanol for 24 h before the addition of substrate. Data are given as mean ± S.D. (n = 3–6); statistically significant difference (**, P < 0.01).

particular, the formation of the active vitamin D hormone has
been studied in prostate cells and other cells in relation to
cancer (Lou et al., 2004). Whereas regulation of the 1α-
hydroxylation step, catalyzed by CYP27B1, has been studied
extensively, the regulation of the different 25-hydroxylating
enzymes in the bioactivation of vitamin D3 in various tissues
is still unclear (Prosser and Jones, 2004). The current results
show that the 25-hydroxylating enzymes are expressed dif-
ferently in various human cell types. Also the nuclear recep-
tors VDR and PXR, needed for regulation of the gene expres-
sion by 1α,25-dihydroxyvitamin D3 and drugs, were found to
be expressed differently in various cells.

Prolonged therapy with phenobarbital may cause vitamin D
deficiency. Several explanations for this have been sug-
gested. PXR-mediated induction of CYP24A1 or CYP3A4 has
recently been suggested to increase the metabolism of 1α,25-
dihydroxyvitamin D3 and to explain the drug-induced osteo-
malacia by phenobarbital (Pascussi et al., 2005; Xu et al.,
2006; Zhou et al., 2006). In a previous report using the pig as
model, we presented results indicating a possible novel mech-
anism for drug-induced osteomalacia by phenobarbital, in-
volving phenobarbital-mediated suppression of hepatic 25-
hydroxylation of vitamin D3 (Hosseinipour et al., 2007). The
current results showing a phenobarbital-mediated suppress-
ion also of human CYP2R1, an important human 25-hydrox-
ylase, support the hypothesis that phenobarbital suppresses
the bioactivation of vitamin D3. It may be concluded from
these results that phenobarbital regulates the expression of
CYP2R1 differently in fibroblasts and LNCaP cells. Our find-
ing that PXR, a nuclear receptor involved in gene regulation
by several xenobiotics, is expressed in fibroblasts but not in
LNCaP cells may offer an explanation for this cell-specific
difference in effect of phenobarbital on CYP2R1 expression.
The data in the present study support our previous hypo-
thesis that vitamin D3 25-hydroxylation may be suppressed by
phenobarbital (Hosseinipour et al., 2007). A down-regulation
of 25-hydroxylation by phenobarbital may explain, at least in
part, the increased risk of osteomalacia, bone loss and frac-
tures in long-term phenobarbital therapy.

Osteomalacia and severe vitamin D deficiency diagnosed
after introduction of antiretroviral therapy, including ef-
avirenz, have been described in a case report (Gyllensten et
al., 2006). It was suggested that CYP450 enzyme induction
by efavirenz might have affected vitamin D metabolism in
this patient, resulting in an aggravation of a pre-existing
vitamin D insufficiency caused by nutritional habits and less
vitamin D synthesis in the skin. The results of the current
study suggest an alternative explanation, implying that ef-
avirenz is able to suppress the first step in the bioactivation
of vitamin D3 mediated by the human vitamin D3 25-hydroxy-
lase CYP2R1. It may also be concluded that efavirenz sup-
presses CYP2R1 mRNA expression in fibroblasts but not in
LNCaP cells. This difference in regulation by efavirenz on
CYP2R1 is correlated with expression of PXR in fibroblasts
but not in LNCaP cells.

The relative roles of various human 25-hydroxylating en-
zymes in the bioactivation of vitamin D3 under different
conditions are not completely clear. CYP2J2 and CYP3A4 are
reported to prefer vitamin D2 over the physiological form
vitamin D3 and seem less important in the bioactivation of
vitamin D3 (Gupta et al., 2004; Aiba et al., 2006). Both
CYP27A1 and CYP2R1 preferentially hydroxylate vitamin
D3 and therefore might be more interesting for human vita-
m几十年 come
and has been suggested to be an important enzyme when vitamin D₃ concentrations are high. Patients with mutations in the CYP27A1 gene do not always have decreased 25-hydroxyvitamin D₃ levels, whereas cholesterol metabolism, where CYP27A1 is involved, is seriously affected (Moghadasian et al., 2002). CYP2R1 has a Km within the physiological range of vitamin D₃ concentration, and mutations in the CYP2R1 gene have been reported to be associated with disturbances of vitamin D status (Cheng et al., 2004; Shinkyo et al., 2004). From a regulatory point of view, however, this enzyme has been poorly defined. The present study showing that CYP2R1, in contrast to the other 25-hydroxylating enzymes, seems to be regulated further supports an important physiological role for this enzyme as a 25-hydroxylase in the bioactivation of vitamin D₃.

Perhaps the most important finding in the current study is that human CYP2R1 in extrahepatic cells can be regulated by vitamin D metabolite(s) and some drugs. The results indicate that both the expression of CYP2R1 mRNA and the metabolism of 1α,25-dihydroxyvitamin D₃ in dermal fibroblasts and prostate cancer LnCaP cells may be subject to VDR-mediated suppression in the presence of physiological concentrations of 1α,25-dihydroxyvitamin D₃. Such an autocrine regulation of 25-hydroxylase by vitamin D metabolites or exogenous compounds in prostate as well as other cells might be a previously unknown means of controlling cellular levels of 25-hydroxyvitamin D₃ and 1α,25-dihydroxyvitamin D₃. Because these vitamin D₃ metabolites are reported to be active hormones affecting both normal and cancerous cells in several ways, this regulatory mechanism might have a fundamental impact on cell function.

References

