Synthesis and Evaluation of Potent KCNQ2/3-Specific Channel Activators

Manoj Kumar, Nicholas Reed, Ruiting Liu, Elias Aizenman, Peter Wipf, and Thanos Tzounopoulos

Department of Otolaryngology, School of Medicine (M.K., T.T.); Department of Chemistry (N.R., R.L., P.W.); Department of Neurobiology (E.A., T.T.); and Pittsburgh Institute for Neurodegenerative Diseases, School of Medicine (E.A.), University of Pittsburgh, Pittsburgh, Pennsylvania

Received December 30, 2015; accepted March 21, 2016

ABSTRACT

KQT-like subfamily (KCNQ) channels are voltage-gated, non-inactivating potassium ion channels, and their down-regulation has been implicated in several hyperexcitability-related disorders, including epilepsy, neuropathic pain, and tinnitus. Activators of these channels reduce the excitability of central and peripheral neurons, and, as such, have therapeutic utility. Here, we synthetically modified several moieties of the KCNQ2–5 channel activator retigabine, an anticonvulsant approved by the U.S. Food and Drug Administration. By introducing a CF₃-group at the 4-position of the benzylamine moiety, combined with a fluorine atom at the 3-position of the aniline ring, we generated Ethyl (2-amino-3-fluoro-4-[(4-(tri-fluoromethyl)benzyl)amino)phenyl)carbamate (RL648_81), a new KCNQ2/3-specific activator that is >15 times more potent and also more selective than retigabine. We suggest that RL648_81 is a promising clinical candidate for treating or preventing neurologic disorders associated with neuronal hyperexcitability.

Introduction

Epilepsy is the most common neuronal hyperexcitability disorder, affecting 1% of the world population. This neurologic condition is generally managed with sodium channel blockers or GABA receptor agonists (Bialer et al., 2010; Bialer and White, 2010). Although there are several drugs in clinical use with distinct mechanism of action, unfortunately approximately 30% of patients do not respond to these agents (Brodie, 2010; Sharma et al., 2015). Thus, there is an urgent need for drug development to broaden the treatment options.

KCNQ (or Kv7) channels play a critical role in maintaining neuronal excitability and have recently emerged as a potential target for the prevention and treatment of epilepsy and other hyperexcitability-related disorders, including neuropathic pain and tinnitus (Gribkoff, 2008; Miceli et al., 2008; Brown and Passmore, 2009; Wickenden and McNaughton-Smith, 2009; Wulff et al., 2009; Li et al., 2013; Grunnet et al., 2014). These noninactivating potassium channels are open at resting membrane potentials and function as a brake on the excitability of central and peripheral neurons (Brown and Adams, 1980; Robbins, 2001). The KCNQ family comprises five subunits (KCNQ1–5): KCNQ2–5 are confined to the nervous system, including the brainstem and inner ear, whereas KCNQ1 is limited to the heart and peripheral epithelial and smooth muscle cells (Howard et al., 2007). Genetic mutations in either KCNQ2 or KCNQ3 subunits are linked to benign familial neonatal convulsions, whereas noise-induced reduction in KCNQ2/3 channel activity leads to development of tinnitus in mice (Biervert et al., 1998; Jentsch, 2000; Li et al., 2013; Li et al., 2015). Moreover, pathologic reduction in KCNQ2/3 channel activity is involved in different classes of seizures, neuropathic pain, migraine, anxiety, attention-deficient-hyperactivity disorder, schizophrenia, mania, and bipolar disease (Munro and Dalby-Brown, 2007; Hansen et al., 2008; Grunnet et al., 2014). As a result, KCNQ channel activators, which lead to the opening of these channels at more hyperpolarized potentials, have recently been employed to treat or prevent epilepsy (Gribkoff, 2008; Miceli et al., 2008; Xiong et al., 2008).

Several KCNQ channel openers are under active development for the management of hyperexcitability disorders (Dalby-Brown et al., 2013; Grunnet et al., 2014; Stott et al., 2014; Davoren et al., 2015). Retigabine, which activates all KCNQ2–5 channels, is the only anticonvulsant KCNQ activator that has been approved by the U.S. Food and Drug Administration (FDA) (Tatulian et al., 2001; Gunthorpe et al., 2012). However, recent data have shown severe side effects associated with retigabine, including urinary retention, blue skin discoloration, and retinal abnormalities.

A B B R E V I A T I O N S: CHO, Chinese hamster ovary; EC₅₀, concentration for 50% of maximal effect; FDA, U.S. Food and Drug Administration; G-V, conductance-voltage; Gₘₐₓ, maximal conductance; KCNQ, potassium channel, voltage-gated, KQT-like subfamily; Kv, voltage-gated potassium channel; RL648_81, Ethyl (2-amino-3-fluoro-4-[(4-(tri-fluoromethyl)benzyl)amino]phenyl)carbamate; SAR, structure-activity relationship; SF0034, Ethyl (2-amino-3-fluoro-4-[(4-fluorobenzyl)amino]phenyl)carbamate; V₁/₂, half-maximal activation voltage; W, tryptophan.
(Jankovic and Ilickovic, 2013). As a result, the FDA has limited its use to patients who have not responded to alternative treatments.

The undesirable side effects are likely due to the poor selectivity of retigabine among KCNQ2–5 channels as well as metabolic degradation products of its aniline ring. For example, retigabine activates KCNQ4 and KCNQ5, which are not involved in the pathology of hyperexcitability-related disorders. KCNQ4 is the primary potassium channel in the smooth muscle of the bladder, where it regulates contractility (Jentsch, 2000; Greenwood and Ohya, 2009). Activation of KCNQ4 leads to membrane hyperpolarization and results in significantly reduced contractility, which may be the cause for urinary retention associated with the use of retigabine. Moreover, a form of dominant deafness arises from loss of function of KCNQ4 (Kharkovets et al., 2000), so the opening of these channels may affect hearing.

In addition to expression in the central nervous system, KCNQ4 and KCNQ5 are also found in skeletal muscle (Jentsch, 2000; Iannotti et al., 2010; Iannotti et al., 2013). Accordingly, there is an urgent need for the development of potent and selective KCNQ2/3 channel activators, which, unlike retigabine, do not activate KCNQ4 and KCNQ5 channels.

To achieve this aim, we synthesized and evaluated several novel KCNQ2/3-specific channel activators. To maximize potency, we manipulated the different chemical components or “zones” of retigabine (Fig. 1). Particularly, by introducing a CF3 group in zone 1 at the 4-position of the benzylamine moiety, combined with a fluorine atom in zone 2 at the 3-position of the aniline ring, we generated Ethyl (2-amino-3-fluoro-4-((4-(trifluoromethyl)benzyl)amino)phenyl)carbamate (RL648_81), a new KCNQ2/3-specific activator that is 3 times more potent and also more selective than Ethyl (2-amino-3-fluoro-4-(4-fluorobenzyl)amino)phenyl)carbamate (SF0034), a recently described retigabine analog with increased potency and selectivity for KCNQ2/3 channels (Kalappa et al., 2015). We propose that RL648_81 is a promising clinical candidate for the treatment or prevention of hyperexcitability-related neurologic disorders.

Materials and Methods

Constructs and Chemicals. The KCNQ2, KCNQ3, KCNQ4, KCNQ5, and KCNQ2 (W236L) constructs as well as the PIPKIα90 plasmid used in this study have been described previously elsewhere (Soh and Tzingounis, 2010; Kalappa et al., 2015) and were generously provided by Dr. Anastassios Tzingounis (University of Connecticut, Storrs, CT). Buffers and salts were purchased from Sigma-Aldrich (St. Louis, Missouri, MO). Compounds stock solutions (20 mM) were made in dimethylsulfoxide. All stock solutions were stored at 2–20°C. On the day of experiment, fresh working drug concentrations were prepared from stock solutions by dissolving them in physiologic buffer solution.

Cell Culture and Transfection. Chinese hamster ovary (CHO) cells were plated on glass coverslips in 35-mm culture dishes and were incubated and maintained at 37°C in a humidified incubator.
with 5% CO₂. To get a heterologous KCNQ2/3 configuration, CHO cells were transfected with human KCNQ2 and KCNQ3 subunits cDNA in a 1:1 (0.5 μg:0.5 μg) ratio with 0.5 μg of green fluorescent protein plasmid using lipofectamine transfection reagent (Thermo Fisher Scientific, Waltham, MA) and used for recording within 24 to 72 hours after transfection. For homomeric KCNQ4 and KCNQ5 channels, 1 μg of plasmid cDNA was used. To record robust KCNQ5 current, we cotransfected KCNQ5 with pIREs-deRed-PIPKIg90. PIPKIg90 increases KCNQ channel open probability (Li et al., 2005).

Whole-Cell Patch Clamp Electrophysiology. We used whole-cell patch clamp electrophysiology to assess the effects of retigabine and of the synthesized compounds on KCNQ channel currents. We conducted electrophysiology experiments at room temperature (22–25°C). Patch pipettes of borosilicate glass (BF150-110-10; Sutter Instrument Company, Novato, CA) were pulled to a tip resistance of 4–6 MΩ. Patch pipettes were filled with a solution consisting of (in mM): 132 K-gluconate, 10 KCl, 4 Mg•ATP, 20 HEPES, and 1 EGTA•KOH, pH 7.2–7.3. Coverslips containing cultured cells were placed in the recording chamber on the stage of an inverted light microscope and superfused continuously with an external solution consisting of (in mM): 144 NaCl, 2.5 KCl, 2.25 CaCl₂, 1.2 MgCl₂, 10 HEPES, and 22 D-glucose, pH 7.2–7.3. Osmolarity was adjusted to 300–305 mOsm and pH to 7.2–7.3 with NaOH.

The cells were clamped at −85 mV, and currents were elicited by 1-second depolarization potentials in 10 mV increments, from −105 to +15 mV, followed by a return step to −70 mV. Currents elicited by each voltage step were measured and used to generate the conductance-voltage (G-V) curves, as described in the figure legends. These values are adjusted for the calculated junction potential, which was −15 mV. Series resistance was compensated by 75%.

To quantify the potency of the tested compounds, we measured the shift in V1/2 at increasing concentrations and used a Hill equation fit to calculate their EC50, which is the concentration of the compound that produces a half-maximal shift in V1/2. Data were acquired through an Axopatch 200 amplifier (Molecular Devices, Sunnyvale, CA), low-pass filtered at 2 kHz, sampled at 10 kHz using the pClamp 10 data acquisition system (Molecular Devices).

Data Analysis and Statistics. We used the Boltzmann function to fit the G-V curves and determine the maximal conductance (Gmax) and half-maximal activation voltage (V1/2) of KCNQ currents, where:

\[G = G_{\text{max}} \left[1 + e^{\frac{V - V_{1/2}}{k}} \right] \]

and k is the slope factor. To calculate the dependence of the shift in V1/2 with the concentration of different KCNQ channel activators, we measured the V1/2 of KCNQ2/3 currents in presence of various concentrations of compounds (100 nM to 30 μM). We then fitted the agonist dependence of the shift of the V1/2 obtained by different concentrations with a Hill equation, where ΔV1/2 = V1/2 max * [Activator]n/[Activator]n + EC50n. ΔV1/2 is the change in V1/2 caused by the activator, EC50 is the concentration of the KCNQ channel activator that causes 50% of the maximal effect in V1/2, n is the Hill coefficient, and [Activator] is the concentration of KCNQ activator.

All data are presented as mean values ± S.E.M. Statistical significance between control and test conditions was determined using a two-tailed Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001. Detailed values are found in the Supplemental Data (values for main figures).
using Student’s t test (paired or unpaired) and one-way analysis of variance. Tukey-Kramer post hoc test for multiple comparisons was performed as needed. Data analysis and statistical tests were performed using GraphPad Prism version 6 (GraphPad Software, San Diego, CA) and Origin2015 (OriginLab, Northampton, MA).

Results

Retigabine and its derivative SF0034 shift the voltage-dependent opening of KCNQ channels toward more hyperpolarized potentials, leading to increased K⁺ currents at resting membrane potential (Tatulian et al., 2001; Kalappa et al., 2002).

Fig. 4. Addition of a trifluoromethyl group at the 3- or 4-position of the phenyl ring in zone 1 significantly increased the potency in activating KCNQ2/3 currents. CHO cells transiently expressing heterologous KCNQ2/3 channels were clamped at −85 mV, and KCNQ2/3 currents were elicited by a 1-second depolarization step, in 10 mV increments from −105 to +15 mV followed by a return step to −70 mV; the voltage protocol is shown below A1. (A–D1) Representative current traces of KCNQ2/3 channels recorded at increasing membrane potentials in the absence or presence of 100 nM NR561_40 (A1), 100 nM NR561_50 (B1), 100 nM NR579_04 (C1), and 100 nM NR561_62 (D1). (A–D) Representative curves of normalized G-V relationship of KCNQ2/3 currents at control and at increasing concentration of NR561_40 (A2), NR561_50 (B2), NR579_04 (C2), and NR561_62 (D2). (A–D) Summary bar graphs representing half-activation (V1/2) of KCNQ2/3 currents calculated from normalized G-V Boltzmann curves at control and at increasing concentration of NR561_40 (A3), NR561_50 (B3), NR579_04 (C3), and NR561_62 (D3). (A–D) Representative curves showing half-activation shift (ΔV1/2) by NR561_40 (EC50 0.91 ± 0.08 μM, n = 4–8; red) (A4), by NR561_50 (EC50 0.74 ± 0.07 μM, n = 4–9; red) (B4), by NR579_04 (EC50 NA, n = 4–9; red) (C4), and by NR561_62 (EC50 1.48 ± 0.18 μM, n = 4–9; red) (D4). NR561_40 and NR561_50 showed similar potency as SF0034 in activating KCNQ2/3 channel currents. NR561_62 showed 2 to 3 times lower potency than SF0034 whereas NR579_04 did not activate KCNQ2/3 currents at all. Curves were fitted with the Hill equation, and EC50 values were calculated. Error bars represent the mean ± S.E.M. *P < 0.05; **P < 0.01. Detailed values are found in the Supplemental Data (values for main figures).
et al., 2015). To generate KCNQ2/3 channel activators with increased potency and selectivity, we partitioned retigabine’s chemical structure into three distinct zones (Fig. 1). During the first round of chemical synthesis we mainly modified zones 1 and 3, whereas in the second iteration of our structure-activity relationship (SAR) analysis, we combined the beneficial modifications found for zones 1 and 3 with previously known beneficial modifications on zone 2, which led to the development of SF0034 (Fig. 1; Kalappa et al., 2015).

Based on the site of modification, we also categorized first-generation compounds into three classes. Class I compounds had substitutions at the phenyl ring in zone 1, class II compounds had substitutions at the methylene group in zone 1, and class III compounds featured substitutions in zone 3 (Fig. 2). Our guiding principle for this round of SAR studies was to modulate both steric and, in particular, electronic features in zone 1 by introducing fluoride, trifluoromethyl, and, importantly, a novel pentadifluorosulanyl group, which is considered a “super-trifluoromethyl” substituent (Wipf et al., 2009; Mo et al., 2010; Alvarez et al., 2015). These modifications led to our class I analogs NR561_29, NR561_40, NR561_45, and NR561_50 (see Supplemental Data for full chemical names).

As part of our class II analog design, we introduced substituents at the benzylic methylene group, designed to slow down metabolic degradation (trifluoromethyl: NR579_04; deuterium: NR561_87). Moreover, we introduced a preliminary series of heterocycle analogs of the phenyl group in zone 1, that is, a more electron-rich thiophene (NR579_46) and a more electron-deficient thiazole (NR579_38). Finally, our class III design modified the steric size of the ethylcarbamate in zone 3 with previously considered a “super-trifluoromethyl” substituent (Wipf et al., 2009; Mo et al., 2010; Alvarez et al., 2015). These modifications led to our class I analogs NR561_29, NR561_40, NR561_45, and NR561_50 (see Supplemental Data for full chemical names).

Incorporation of Highly Fluorinated Substituents at the Phenyl Ring of Retigabine Increases the Potency of KCNQ2/3 Channel Activation. To set the control conditions for assessing the potency and selectivity of the newly synthesized compounds, we first evaluated the ability of two standard activators, retigabine and SF0034, in potentiating KCNQ2/3 channel-mediated K⁺-currents under our assay conditions (Fig. 3). We transiently expressed heterologous KCNQ2/3 channels in CHO cells and tested the effect of increasing concentrations (100 nM to 30 μM) of retigabine and SF0034 on KCNQ2/3 currents. We employed whole-cell patch clamp electrophysiologic techniques (Kalappa et al., 2015). We found that 100 nM SF0034 increased KCNQ2/3 currents at hyperpolarized potentials, whereas 100 nM retigabine failed to show any effect (Fig. 3A1 and Fig. 3B1). Consistent with our previous studies (Kalappa et al., 2015), SF0034 was approximately 5 times more potent than retigabine in shifting the V½ of KCNQ2/3 currents (retigabine: EC50 3.3 ± 0.8 μM, n = 4–11; SF0034: EC50 0.60 ± 0.06 μM; n = 5–21, P < 0.01) (Fig. 3, A–D).

Next, we tested the ability of the newly synthesized compounds to shift the V½ of KCNQ2/3 currents. We used different concentrations of these analogs to evaluate whether the new substituents resulted in gain or loss of potency in activating KCNQ2/3 currents compared with retigabine and SF0034. A concentration of 100 nM NR561_40 (CF3-group at the 4-position of the phenyl ring) increased the KCNQ2/3 currents at hyperpolarized potentials (Fig. 4A1). Consistent with this finding, a Boltzmann fit of the G-V relationship revealed a significant shift in the V½ toward hyperpolarized potentials in the presence of 100 nM or 10 μM NR561_40 without altering Gmax (Gmax:n:control: 0.95 ± 0.015, n = 9; 100 nM: 0.99 ± 0.043, n = 5; 10 μM: 0.97 ± 0.108, n = 4) (Fig. 4A2–4).

Similarly, we measured the shift in V½ in the presence of increasing concentrations of NR561_40 (100 nM to 30 μM) and calculated the EC50 values (Fig. 4A3). NR561_40 showed a similar potency as SF0034 (Fig. 5A).

Because retigabine has only one fluorine atom at the 4-position of the phenyl ring, these results suggested that increasing the steric bulk and electron-withdrawing properties at this position improves the potency at KCNQ2/3 channels. NR561_29, which has an even larger and more electronegative SF5-group at this position, demonstrated a 4- to 5-fold higher potency compared with retigabine but showed a significantly lower maximal ΔV½ compared with NR561_40 and SF0034. Maximal ΔV½ values were calculated from the observed shift in V½ at 10 μM concentrations.

Fig. 5. Summary bar graphs representing (A) EC50 and (B) maximal (max) ΔV½ of first-generation compounds tested at KCNQ2/3 channels. Like SF0034, first-generation class I compounds NR561_40, NR561_50, and NR561_29 showed 4 to 5 times higher potency than retigabine in activating KCNQ2/3 channel currents. However, NR561_29 showed significantly lower max ΔV½ compared with retigabine and SF0034. EC50 is the concentration of the compound that produces a half-maximal shift in V½. Max ΔV½ is the shift in V½ caused by 10 μM of the tested compound. Detailed values are found in the Supplemental Data (values for main figures).
Fig. 6. NR561_50 does not activate KCNQ4 and KCNQ5 channel currents. CHO cells transiently expressing heterologous homomeric KCNQ4 or KCNQ5 channels were clamped at −85 mV, and currents were elicited by a 1-second depolarization step, in 10 mV increments from −105 to +15 mV, followed by a return step to −70 mV; the voltage protocol is shown below A1. (A1, B1) Representative current traces of KCNQ4 (A1) and KCNQ5 (B1) channels recorded at increasing membrane potentials in absence and in presence of 100 nM NR561_50. (A2, B2) Representative curves of normalized G-V relationship of KCNQ4 (B1) and KCNQ5 (B2) currents at control, 100 nM, and 1 μM NR561_50. (A3, B3) Summary bar graph representing half-activation voltage ($V_{1/2}$) of KCNQ4 (A3) and KCNQ5 (B3) channel currents calculated from normalized G-V Boltzmann curves at control, 100 nM, and 1 μM NR561_50. (C1, D1) Representative current traces of KCNQ4 (C1) and KCNQ5 (D1) channels recorded at increasing membrane potentials in absence and in presence of 100 nM NR561_40. (C2, D2) Representative curves of normalized G-V relationship of KCNQ4 (C2) and KCNQ5 (D2) currents at control, 100 nM, and 1 μM NR561_40. (C3, D3) Summary bar graph representing half-activation voltage ($V_{1/2}$) of KCNQ4 (C3) and KCNQ5 (D3) channel currents calculated from normalized G-V Boltzmann curves at control, 100 nM, and 1 μM NR561_40.
of the compound (Fig. 5B). This result suggested that a large steric size in zone 1 might limit the potency/efficacy at KCNQ2/3 channels (Fig. 5).

Furthermore, when either the smaller CF$_3$-group or the larger SF$_5$-group were introduced at the 3-position of the phenyl ring, the resulting NR561$_{50}$ (Fig. 4B) and NR561$_{45}$ both showed similar potency but a lower maximal $\Delta V_{1/2}$ compared with NR561$_{40}$ and SF0034. From this result we concluded that the exact position of the fluorinated groups at the phenyl ring plays a critical role in determining the potency/efficacy of KCNQ activators at KCNQ2/3 channels.

Likewise, we tested class II and class III compounds for their potency and efficacy at shifting the $V_{1/2}$ of KCNQ3 currents. The class II compounds NR579$_{38}$, NR579$_{46}$, and NR561$_{87}$ shifted the $V_{1/2}$ of KCNQ2/3 channels but did not show any improvement in EC_{50} values relative to retigabine. Interestingly, NR579$_{04}$ failed to show any effect on KCNQ2/3 channel currents, even at concentrations as high as 10 mM, which demonstrates the need for a small linker between the phenyl ring and the benzylic amine (Fig. 4C and Fig. 5). Among class III compounds, only NR561$_{62}$ demonstrated potency that was 2- to 3-fold better than retigabine; the more hydrophilic substituents were not tolerated (Fig. 4D).

Taken together, our SAR results demonstrate that the position and the steric size of fluorinated groups in zone 1 of retigabine are critical determinants of compound potency and efficacy. Addition of CF$_{3}$- and SF$_5$-groups in positions 3 and 4 of the phenyl ring of retigabine generates KCNQ2/3 activators with increased potency over retigabine. Incorporation of a trifluoromethyl substituent specifically at the para-position of the benzylamine moiety resulted in the maximal improvement in potency and efficacy at KCNQ2/3 channels, eclipsing that of SF0034. Manipulation of the retigabine structure as probed in class II and III compounds did not provide further improvements in KCNQ2/3 channel potency, with the exception of NR561$_{62}$, where the ethyl group was replaced with a more lipophilic iso-propyl chain in the carbamate moiety.

KCNQ2/3 Selectivity of CF$_3$- and SF$_5$-Containing Analogs. Next we determined the selectivity profile of the class I compounds that showed increased potency for KCNQ2/3 channels, namely, NR561$_{40}$, NR561$_{50}$ and NR561$_{29}$. To assess the selectivity of these analogs, we quantified their effect on homomeric KCNQ4 and KCNQ5 channels. First, we tested NR561$_{50}$ at homomeric KCNQ4 channels. A concentration of 100 nM NR561$_{50}$ failed to alter the $V_{1/2}$ of KCNQ4 channels (Fig. 6A$_1$). A Boltzmann fit of the G-V relationship in presence of 100 nM or 1 μM compound did not shift the $V_{1/2}$ of KCNQ4 channels (Fig. 6A$_2$–λ). Similarly, NR561$_{50}$ did not shift the $V_{1/2}$ of KCNQ5 channels (Fig. 6B). Although 100 nM NR561$_{40}$ and NR561$_{29}$ did not change the $V_{1/2}$ at 1 μM concentration both NR561$_{40}$ and NR561$_{29}$ shifted the $V_{1/2}$ of KCNQ4 currents toward more hyperpolarized potentials (Fig. 6, C and E). Furthermore, NR561$_{40}$ and NR561$_{29}$ increased KCNQ5 currents and shifted the $V_{1/2}$ to more hyperpolarized potentials at 100 nM and 1 μM (Fig. 6, D and F).

Taken together, NR561$_{50}$ proved to be selective for KCNQ2/3 channels whereas NR561$_{40}$ and NR561$_{29}$ were found to be less selective. This profile suggests that incorporation of a trifluoromethyl group at the meta-position of the benzylamine generates activators with enhanced KCNQ2/3 selectivity.

Incorporation of a Fluorine Substituent in Zone 2 Generates the Most Potent KCNQ2/3 Activator Yet Described. Because incorporation of a fluorine atom at the 3-position of the aniline ring of retigabine improved the potency and selectivity at KCNQ2/3 channels (Kalappa et al., 2015), we hypothesized that addition of fluorinated groups in zone 2 might also further improve the potency and selectivity of class I compounds. To test our hypothesis, we selected the most potent and efficacious compounds based on the first-generation SAR (Fig. 5) and introduced a fluorine atom at the 3-position of the aniline. In this fashion, RL648$_{81}$ was obtained as the fluorinated analog of NR561$_{40}$, RL648$_{73}$ as the fluorinated analog of NR648$_{50}$, RL648$_{86}$ as the fluorinated analog of NR561$_{62}$, and RL673$_{02}$ as the fluorinated analog of NR561$_{45}$ (Fig. 7). For synthetic, full chemical names, and spectroscopic details, see the Supplemental Data.

We first evaluated the effect of different concentrations of RL648$_{81}$ at KCNQ2/3-mediated currents (Fig. 8A$_1$). Application of 100 nM RL648$_{81}$ robustly shifted the $V_{1/2}$ of KCNQ2/3 channels toward hyperpolarized potentials. Also, increased concentrations of 1 μM or 10 μM RL648$_{81}$ caused a more robust shift in $V_{1/2}$ compared with the shift caused by 1 μM or 10 μM SF0034 (Fig. 8A$_2$–λ). Evaluation of the EC$_{50}$ revealed that RL648$_{81}$ is 3 times more potent than SF0034 at shifting the voltage dependence of KCNQ2/3 channels to more hyperpolarized potentials (Fig. 8D; EC$_{50}$ 0.19 ± 0.02 μM, $n = 5$). This shift in $V_{1/2}$ was not associated by changes in G_{max} (Fig. 8 A$_{1,3}$; G_{max}: control 0.96 ± 0.012, RL648$_{81}$ 1.31 ± 0.06, RL648$_{73}$ 1.46 ± 0.14, RL648$_{86}$ 1.40 ± 0.10, and RL673$_{02}$ 1.51 ± 0.18) because the voltage dependence of KCNQ2/3 and KCNQ5 channels is the same (Fig. 8C). The novel KCNQ2/3 activators RL648$_{73}$ and RL673$_{02}$ demonstrated a 2- to 3-fold increase in potency over retigabine (Fig. 8B).
RL648_81 is 3 times more potent than SF0034 in activating KCNQ2/3 channel currents and does not potentiate KCNQ4 and KCNQ5 channel currents. CHO cells transiently expressing heterologous KCNQ2/3 channels or homomeric KCNQ4 and KCNQ5 channels were clamped at -85 mV, and currents were elicited by a 1-second depolarization step, in 10 mV increments from -105 to $+15$ mV, followed by a return step to -70 mV; the voltage protocol is shown in A1 (left). (A1) Representative current traces of KCNQ2/3 channels recorded at increasing membrane potentials in absence and presence of 100 nM or 1 μM RL648_81. (A2) Representative curves of normalized G-V relationship of KCNQ2/3 currents at control and at increasing concentration of RL648_81. (A3) Summary bar graph representing half-activation ($V_{1/2}$) of KCNQ2/3 currents calculated from normalized G-V Boltzmann curves at control and at increasing concentration of RL648_81. (A4) Representative curves showing half-activation voltage shift ($ΔV_{1/2}$) by RL648_81 (EC$_{50}$ 0.19 ± 0.02 μM, n = 4–11; red) and SF0034 (EC$_{50}$ 0.80 ± 0.06 μM, n = 5–21; black) in a concentration-dependent manner (100 nM to 30 μM). Curves
were fitted with a Hill equation, and EC_{50} values were calculated. (B_1) Representative current traces of KCNQ4 currents at increasing membrane potentials absence and presence of 100 nM RL648_81. (B_2) Representative curves of normalized G-V (conductance-voltage) relationship of KCNQ2WT (A_2) and KCNQ2(W236L) (B_2) currents calculated from normalized G-V Boltzmann curves at control and at increasing concentrations of RL648_81. Mutation of W236 at KCNQ2 subunit abolished the potentiation effect of RL648_81 at KCNQ2 currents. Error bars represent the mean ± S.E.M. *P < 0.05; **P < 0.01. Detailed values are found in the Supplemental Data (values for main figures).

The conserved residue, tryptophan (W) in the intracellular end of the S5 helix, W236 for KCNQ2 numbering, is necessary for the enhancing effect of retigabine (Schenzer et al., 2005). To determine whether the gating effect of RL648_81 also requires the same W residue, we examined the influence of RL648_81 in KCNQ2 channels that lack W236. Indeed, although RL648_81 had a strong gating effect on KCNQ2 channels, this efficacy was abolished upon substitution of W236 to L (Fig. 9, A and B). These results suggest that RL648_81, like retigabine and SF0034, requires W236 to exert its enhanced gating properties.

Taken together, our SAR investigations led to the discovery of several highly selective and potent channel agonists, including RL648_81, the most potent KCNQ2/3-specific channel activator reported to date, which has demonstrated 3 times higher potency than SF0034. Moreover, RL648_73 and RL648_86, which are two times more potent than SF0034, represent useful secondary lead compounds. Absorption, distribution, metabolism, excretion/ toxicity data for SF0034
are not available yet, but in view of the undesirable side effects associated with retigabine, we suggest that these more potent, selective, and electronically deactivated KCNQ2/3 activators may be attractive candidates for treating or preventing hyperexcitability disorders at lower dosage and with reduced side effects.

Discussion

Epilepsy is a hyperexcitability disorder that affects approximately 65 million people worldwide (Bialer and White, 2010). Despite the availability of more than 20 antiepileptic drugs, 25%–40% of epilepsies are refractory to the treatment (Brodie, 2010). Moreover, even when currently available drugs are helpful, they are not without adverse effects (Bialer et al., 2010; Thurman et al., 2011). Therefore, there is an urgent need for novel drugs with improved therapeutic index characterized by increased potency and reduced toxicity.

Retigabine, which stabilizes the open state of KCNQ2-5 channels and shifts the voltage-dependence toward more hyperpolarized potentials (Wuttke et al., 2005), is an FDA-approved KCNQ channel activator that serves as an add-on for the treatment of resistant partial-onset seizures (Gunthorpe et al., 2012). However, recently identified side effects of retigabine, including retinal abnormalities, skin discoloration, and urinary retention, are significantly limiting its clinical use.

Here, we disclose the preparation and biological analysis of RL648_81 and related analogs, and report that this compound is the most potent KCNQ2/3-specific channel activator known to date. Due to its higher yet selective agonism on KCNQ2/3 channels, RL648_81 is expected to be more effective at a lower dose than retigabine and its analog SF0034 in preventing seizures. In addition, RL648_81 does not activate either KCNQ4 or KCNQ5. Because of its enhanced specificity over retigabine, RL648_81 is expected to have fewer side effects.

Although the mechanism by which retigabine-mediated toxicity influences skin and retina remains poorly understood, one hypothesis is that UV radiation may cause photodegradation and oxidation of retigabine’s aniline ring, which may lead to the formation of colored deposits in skin and eyes. The incorporation of electron-withdrawing highly fluorinated substituents significantly reduces the highest occupied molecular orbital energy of RL648_81 (−8.33 eV) versus retigabine (−8.06 eV), and thus should render RL648_81 less prone to formation of reactive metabolites (Kawai et al., 2007).

The trifluoromethylated RL648_81 is also expected to be more resistant to photodegradation and therefore less toxic to the eye and to the skin (Dow et al.; 2006). In particular, the electronic properties of RL648_81 (Supplemental Fig. 2C) compared with retigabine (Supplemental Fig. 2A) suggest that its aniline π-system as well as all three attached nitrogen atoms are considerably more electron-deficient. Furthermore, the CF₃-substituent is a stronger deactivator of the benzylamine π-system, and also presents a greater steric barrier to potential cytochrome P450-induced arene hydroxylation. The electrostatic potential map for RL673_02 (Supplemental Fig. 2B) and RL648_73 (Supplemental Fig. 2D) is closely related to that of RL648_81, with the SF₅-substituent in RL673_02 providing even greater steric and electronic deactivation of the compound.

The conserved residue W236 is necessary for the enhancing effect of retigabine, SF0034, and RL648_81 on the gating properties of KCNQ2 channels (Schenzer et al., 2005). Whereas it was thought that the critical property of W was its hydrophobicity (Wuttke et al., 2005), recent studies have revealed that the ability of W to form H-bonds with the carbonyl/carbamate oxygen atom present in retigabine makes this contact critical (Kim et al., 2015). These studies suggest that the strength of the H-bond between retigabine and W236 determines the potency of retigabine. In part, the improved potency of SF0034 and RL648_81 is probably due to their ability to form stronger H-bonds with W236 than retigabine. However, besides W265, other residues are important for the gating effects of retigabine, such as L272, L314, and L338 (KCNQ3 numbering) and G301/G340 (KCNQ2/KCNQ3 numbering) (Schenzer et al., 2005; Wuttke et al., 2005; Lange et al., 2009). Thus, based on our SAR studies, we also suggest that the activity of analogs can be further modulated by hydrophobic interactions at the benzylamine moiety, which the carbamate-W236 interaction positions into the vicinity of L272, L314, and L338 (Lange et al., 2009), and that the more lipophilic RL648_81 (logP = 3.4) is a better fit than retigabine (logP = 2.5) for this hydrophobic pocket at the pore-forming S5 inner loop and S6 helix domains, located near the intracellular voltage-operated gate of KCNQ2–5 channels.

In conclusion, our investigation of fluorinated substituents on retigabine, in particular the effect of highly fluorinated polar and lipophilic CF₃- and SF₅-groups in the benzylamine portion of the KCNQ2-5 channel activator, yielded a series of submicromolar affinity activators with exquisite selectivity for KCNQ2/3. We propose that the combination of increased potency and selectivity of RL648_81, as well as its structural features and modified electrostatic properties, may provide a solution to the problems associated with the undesirable side effects associated with retigabine.

Acknowledgments

The authors thank Dr. Anastassios Tzingounis for providing KCNQ2/3 mutants and Karen Hartnet for help with cell culture and plasmid preparation.

Authorship Contributions

Participated in research design: Kumar, Aizenman, Wipf, Tzounopoulos.

Conducted experiments: Kumar, Reed, Liu, Wipf.

Contributed new reagents or analytic tools: Kumar, Liu, Aizenman.

Performed data analysis: Kumar, Reed, Liu, Wipf, Tzounopoulos.

Wrote or contributed to the writing of the manuscript: Kumar, Liu, Aizenman, Wipf, Tzounopoulos.

References

Molecular Pharmacology

Supplemental Data

Synthesis and Evaluation of Potent KCNQ2/3-specific Channel Activators

Manoj Kumar¹, Nicholas Reed², Ruiting Liu², Elias Aizenman³,⁴, Peter Wipf² and Thanos Tzounopoulos¹,³

1: Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261

2: Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

3: Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

4: Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine
Figure S1. General synthetic scheme for the analog synthesis.
Figure S2. Combined steric and electronic features of retigabine and new KCNQ2/3-specific channel activators, illustrating the effects of fluorinations on the aromatic rings and their substituents. A: retigabine; B: RL673_02; C: RL648_81; D: RL648_73. The color coding on the electron-density surface reflects the electrostatic potential experienced by a positive probe charge (red=attractive to blue=repulsive). Electron-density surfaces encoded with electrostatic potential maps were calculated in Spartan 10 (Wave Function, Inc., Irvine, CA) with PM6 parametrization. Compared to retigabine (Fig. S2A), RL648_81 (Fig. S2C) has an electron-depleted aniline aromatic system, which also influences the electron density in the attached three nitrogen atoms, decreasing their negative partial charges. The CF₃-substituent in RL648_81 is a stronger deactivator of the benzylamine π-system, but, in particular, increases steric bulk at this
terminus of the molecule and would be expected to pose a steeper steric barrier to cytochrome P450-induced arene hydroxylation and compound metabolism. The electrostatic potential maps for RL673_02 (Fig. S2B) and RL648_73 (Fig. S2D) are also shown for comparison. Both are closely related to that of RL648_81 at the carbamate termini, but show steric and electronic differences in the benzylamine region. The SF₅-substituent in RL673_02 provides the largest steric barrier and electronic deactivation in this series.

<table>
<thead>
<tr>
<th>Compound</th>
<th>KCNQ2/3 EC50 (µM)</th>
<th>KCNQ2/3 ΔV₁/₂ (mV)</th>
<th>KCNQ4 Max ΔV₁/₂ (mV)</th>
<th>KCNQ5 Max ΔV₁/₂ (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retigabine</td>
<td>3.3 ± 0.08</td>
<td>33.9 ± 1.5</td>
<td>Not Tested (NT)</td>
<td>NT</td>
</tr>
<tr>
<td>SF0034</td>
<td>0.06 ± 0.6</td>
<td>50.1 ± 1.6</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>NR561_40</td>
<td>0.91 ± 0.08</td>
<td>50.9 ± 3.1</td>
<td>12.7 ± 0.75</td>
<td>29.7 ± 3.5</td>
</tr>
<tr>
<td>NR561_50</td>
<td>0.74 ± 0.07</td>
<td>39.6 ± 1.7</td>
<td>2.7 ± 0.85</td>
<td>5.6 ± 1.6</td>
</tr>
<tr>
<td>NR561_29</td>
<td>0.76 ± 0.17</td>
<td>27.8 ± 1.7</td>
<td>19.4 ± 1.7</td>
<td>9.5 ± 1.7</td>
</tr>
<tr>
<td>NR561_45</td>
<td>1.34 ± 0.17</td>
<td>34.1 ± 2.9</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>NR579_38</td>
<td>2.55 ± 0.46</td>
<td>13.7 ± 3.9</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>NR579_46</td>
<td>3.53 ± 0.54</td>
<td>46.7 ± 2.6</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>NR561_87</td>
<td>4.03 ± 1.2</td>
<td>32.8 ± 4.9</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>NR579_04</td>
<td>Not Shifted (NS)</td>
<td>(NS)</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>NR561_62</td>
<td>1.48 ± 0.18</td>
<td>34.7 ± 0.74</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>NR579_45</td>
<td>4.49 ± 1.0</td>
<td>26.9 ± 1.1</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>NR579_36</td>
<td>NS</td>
<td>NS</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>RL673_02</td>
<td>0.88 ± 0.28</td>
<td>42.5 ± 4.5</td>
<td>9.7 ± 0.25</td>
<td>7.4 ± 1.3</td>
</tr>
<tr>
<td>RL648_86</td>
<td>0.34 ± 0.07</td>
<td>49.9 ± 2.5</td>
<td>2.6 ± 0.65</td>
<td>3.6 ± 1.4</td>
</tr>
<tr>
<td>RL648_73</td>
<td>0.30 ± 0.05</td>
<td>47.0 ± 4.1</td>
<td>4.3 ± 0.71</td>
<td>5.4 ± 1.5</td>
</tr>
<tr>
<td>RL648_81</td>
<td>0.19 ± 0.02</td>
<td>51.1 ± 3.5</td>
<td>5.1 ± 1.3</td>
<td>6.7 ± 1.5</td>
</tr>
</tbody>
</table>
Table S1

Table S1. Summary values of EC$_{50}$ and maximal (Max) $\Delta V_{1/2}$ for all compounds tested. EC$_{50}$ is the concentration of the compound that produces a half-maximal shift in $V_{1/2}$. Maximal (max) $\Delta V_{1/2}$ is the shift in $V_{1/2}$ at 10 µM concentrations of the compound. NS: $V_{1/2}$ was not shifted by this compound. NT: (Max) $\Delta V_{1/2}$ was not tested for this compound.

Synthesis: The synthesis of these compounds followed the general routes A and B shown in Figure S1. Briefly, in route A we performed a reductive amination to link the benzylic amine portion with the aniline moiety. After selective introduction of the benzyloxy carbonyl (Cbz) protective group, the ortho-nitroaniline was acylated and the Cbz group was removed concomitantly with the reduction of the nitro group to generate the desired analogs. In synthetic route B, we added suitably substituted benzylic amines to para-nitrofluorobenzenes under S$_N$Ar conditions, followed by reduction of the nitro group with zinc and ammonium chloride, and selective N-acylation of the resulting para-aminoaniline.

General Experimental Details. All reactions were performed under an N$_2$ atmosphere and all glassware was dried in an oven at 130 °C for at least 2 h prior to use and allowed to cool under an atmosphere of dry N$_2$ or Ar. Reactions carried out below 0 °C employed a dry ice/acetone or a low-temperature automated cooler and an acetone bath. THF and Et$_2$O were distilled over sodium/benzophenone ketyl radical anion; CH$_2$Cl$_2$ and toluene were distilled over CaH$_2$, and 1,4-dioxane, and MeOH, and MeCN were dried over 3 Å molecular sieves unless otherwise noted. Et$_3$N and other volatile amines were distilled from CaH$_2$ and stored over KOH. Concentration under reduced pressure refers to the use of a rotary evaporator connected to a PIAB Lab Vac.
H40 line to remove solvent, and drying under high vacuum refers to the use of a Fischer Scientific Maxima C Plus vacuum pump (0.5-4 mmHg) to remove traces of solvent. All chromatography was performed on normal phase SiO\textsubscript{2} (Silicycle, 40-63 µm particle size) using literature conditions [Still, W. C.; Kahn, M.; Mitra, A. Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 1978, 43, 2923-2925] unless stated otherwise. Reactions were monitored by thin-layer chromatography (Merck pre-coated silica gel 60 F\textsubscript{254} plates, 250 µm layer thickness) and visualization was accomplished with a 254 nm UV light, by staining with a KMnO\textsubscript{4} solution (prepared by dissolving 1.5 g of KMnO\textsubscript{4} and 1.5 g of K\textsubscript{2}CO\textsubscript{3} in 100 mL of a 0.1% NaOH solution), or by staining with p-anisaldehyde solution (2.5 mL of p-anisaldehyde, 2 mL of AcOH, and 3.5 mL of conc. H\textsubscript{2}SO\textsubscript{4} in 100 mL of 95% EtOH). Melting points were obtained using a Laboratory Devices Mel-Temp II with open capillaries and are uncorrected. 1H and 13C NMR spectra were obtained on Bruker Avance 300, 400, 500, 600, or 700 MHz instruments as indicated in CDCl\textsubscript{3} solution unless otherwise noted. Chemical shifts were reported in parts per million with the residual solvent peak used as an internal standard. 1H NMR spectra were obtained and are tabulated as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, dd = double of doublets, dt = doublet of triplets, m = multiplet, br = broad, app = apparent), number of protons, and coupling constant(s). 13C NMR were recorded at 75, 100, 125, or 175 MHz as specified using a proton-decoupled pulse sequence and tabulated by observed peak. Infrared spectra were measured on ATR-IR instruments. High resolution mass spectra were obtained on a Thermo Fisher Exactive Orbitrap LC-MS using heated electrospray ionization (HESI).
(4-Amino-3-nitro)phenyl-[(4-(pentafluorothio)phenyl)methyl]amine. To a solution of 2-nitro-\(p\)-phenylenediamine (0.751 g, 4.66 mmol) and PTSA (0.045 g, 0.24 mmol) in toluene (25 mL) was added 4-(pentafluorothio)-benzaldehyde (1.115 g, 4.707 mmol). The resulting solution was heated to reflux with a Dean-Stark trap for 21 h, the mixture was filtered through a Buchner funnel packed with a thin pad of SiO\(_2\), and the filtrate was stirred and allowed to cool to rt. The solvent was removed under reduced pressure to give the crude imine (1.10 g) as a bright orange-red solid that was suspended in a mixture of 1,4-dioxane (5.2 mL) and MeOH (1.3 mL), and NaBH\(_4\) (0.120 g, 3.14 mmol) was added in 3 portions at 15 min intervals. The solution was allowed to stir at rt for 3 h, quenched with H\(_2\)O (25 mL) and the resulting solid was collected by filtration. The crude product was washed with H\(_2\)O (500 mL) and dried under high vacuum to give (4-amino-3-nitro)phenyl-[(4-(pentafluorothio)phenyl)methyl]amine (1.09 g, 2.95 mmol, 63%) as a dark purple powder: Mp 129-130 °C (H\(_2\)O); IR (ATR) 3522.9, 3397.9, 1576.9, 1531.8, 1327.7, 1216.3 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\), 400 MHz) \(\delta\) 7.73 (d, 2 H, \(J = 8.4\) Hz), 7.61 (d, 2 H, \(J = 8.4\) Hz), 7.27 (d, 1 H, \(J = 2.8\) Hz), 6.84 (dd, 1 H, \(J = 9.2, 2.8\) Hz), 6.71 (d, 1 H, \(J = 8.8\) Hz), 5.74 (br s, 2 H), 4.37 (s, 2 H), 3.92 (br s, 1 H); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz) \(\delta\) 153.2 (app. t, \(J = 17.5\) Hz), 143.0, 138.9, 138.5, 132.6, 127.7, 126.5 (quint., \(J = 4.6\) Hz), 125.3, 120.4, 106.2, 48.1; HRMS (HESI) \(m/z\) calcd for C\(_{13}\)H\(_{13}\)N\(_3\)O\(_2\)F\(_5\)S [M+H]\(^+\) 370.0643, found 370.0645.
(4-Amino-3-nitro)phenyl-[(3-(pentafluorothio)phenyl)methyl]amine. A solution of 2-nitro-\(p\)-phenylenediamine (0.756 g, 4.69 mmol) and PTSA (0.054 g, 0.28 mmol) in toluene (25 mL) was treated with 3-(pentafluorothio)benzaldehyde (1.10 g, 4.56 mmol) via syringe and the resulting solution was heated to reflux with a Dean-Stark trap for 5 h. The mixture was filtered through a Buchner funnel packed with a thin pad of SiO\(_2\) and the filtrate was stirred and allowed to cool to rt. The solvent was removed under reduced pressure to give the crude imine (1.571 g) as a bright orange-red solid that was suspended in a mixture of 1,4-dioxane (5.2 mL) and MeOH (1.3 mL), and NaBH\(_4\) (0.126 g, 3.30 mmol) was added in 3 portions at 15 min intervals. The solution was allowed to stir at rt for 3 h, quenched with H\(_2\)O (25 mL), and extracted from brine with CH\(_2\)Cl\(_2\) (3 x 200 mL). The solvent was removed under reduced pressure and the resulting residue dried under high vacuum at 60 °C for 12 h to give (4-amino-3-nitro)phenyl-[(3-(pentafluorothio)phenyl)methyl]amine (1.36 g, 3.69 mmol, 79%) as a dark red-purple powder: Mp 128-129 °C (CH\(_2\)Cl\(_2\)); IR (ATR) 3477.6, 3422.5, 3360.7, 3110.0, 1574.8, 1515.2, 1206.6; \(^1\)H NMR (CDCl\(_3\), 400 MHz) \(\delta\) 7.77 (s, 1 H), 7.68 (d, 1 H, \(J = 8.4\) Hz), 7.53 (d, 1 H, 7.6 Hz), 7.47-7.43 (m, 1 H), 7.30 (d, 1 H, \(J = 2.8\) Hz), 6.86 (dd, 1 H, \(J = 8.8, 2.8\) Hz), 6.72 (d, 1 H, \(J = 8.8\) Hz), 5.75 (br s, 2 H), 4.37 (s, 2 H), 3.89 (br s, 1 H); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz) 154.4 (quint., \(J = 18.0\) Hz), 140.3, 139.0, 138.5, 132.6, 130.7, 129.3, 125.4, 125.3-125.1 (overlapping quint.), 120.4, 106.4, 48.6; HRMS (HESI) \(m/z\) calcd for C\(_{13}\)H\(_{13}\)N\(_3\)O\(_2\)F\(_5\)S [M+H]\(^+\) 370.0643, found 370.0641.
(4-Amino-3-nitro)phenyl[4-(trifluoromethyl)phenyl]methyl]amine. A solution of 2-nitro-p-phenylenediamine (0.754 g, 4.68 mmol) and PTSA (0.054 g, 0.28 mmol) in toluene (25 mL) was treated via syringe with 4-(trifluoromethyl)benzaldehyde (0.640 mL, 4.69 mmol). The mixture was heated at reflux with a Dean-Stark trap for 5 h, filtered through a Buchner funnel packed with a thin pad of SiO₂, and the filtrate was stirred and allowed to cool to rt. The solvent was removed under reduced pressure to give the crude imine (1.23 g) as a bright orange-red solid that was suspended in a mixture of 1,4-dioxane (5.2 mL) and MeOH (1.3 mL), and NaBH₄ (0.120 g, 3.14 mmol) was added in 3 portions at 15 min intervals. The resulting solution was allowed to stir at rt for 3 h, quenched with H₂O (25 mL) and extracted from brine with CH₂Cl₂ (3 x 200 mL). The solvent was removed under reduced pressure and the residue dried under high vacuum at 60 °C to give (4-amino-3-nitro)phenyl[4-(trifluoromethyl)phenyl]methyl]amine (1.141 g, 3.666 mmol, 78%) as a dark purple oil: IR (CH₂Cl₂) 3483.6, 3370.0, 1573.9, 1521.1, 1325.0 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.60 (d, 2 H, J = 8.0 Hz), 7.48 (d, 2 H, J = 8.0 Hz), 7.28 (d, 1 H, J = 2.8 Hz), 6.85 (dd, 1 H, J = 8.8, 2.8 Hz), 6.71 (d, 1 H, J = 8.8 Hz), 5.47 (br s, 2 H), 4.37 (s, 2 H), 3.92 (br s, 1 H);¹³C NMR (CDCl₃ 100 MHz) δ 143.1, 139.1, 138.4, 132.6, 129.9 (q, J = 32.1 Hz), 127.8, 125.8 (q, J = 3.6 Hz), 125.3, 124.2 (q, J = 270.0 Hz), 120.3, 106.1, 48.5; HRMS (HESI) m/z calcd for C₁₄H₁₃N₃O₂F₃ [M+H]⁺ 312.0954, found 312.0955.

(4-Amino-3-nitro)phenyl[3-(trifluoromethyl)phenyl]methyl]amine. A solution of 2-nitro-p-phenylenediamine (0.753 g, 4.67 mmol) and PTSA (0.050 g, 0.26 mmol) in toluene (25 mL) was treated via syringe with 3-(trifluoromethyl)benzaldehyde (0.620 mL, 4.64 mmol). The resulting
solution was heated to reflux with a Dean-Stark trap for 5 h, filtered through a Buchner funnel packed with a thin pad of SiO₂, and allowed to cool to rt. The solvent was removed under reduced pressure to give the crude imine (1.203 g) as bright orange solid, that was suspended in a mixture of 1,4-dioxane (3.7 mL) and MeOH (0.90 mL) and NaBH₄ (0.117 g, 0.655 mmol) was added in 3 portions at 15 minute intervals. The resulting solution was allowed to stir at rt for 3 h, quenched with H₂O (25 mL), and extracted with CH₂Cl₂ (3 x 100 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), filtered, and the solvent evaporated under reduced pressure to give crude product (1.141 g). Purification by chromatography on SiO₂ (70% CH₂Cl₂ in hexanes) gave (4-amino-3-nitro)phenyl-[3-(trifluoromethyl)phenyl]methyl]amine (1.10 g, 3.35 mmol, 72%) as a dark purple powder: Mp 95-96 °C (CH₂Cl₂); IR (ATR) 3456.00, 3396.7, 3330.7, 1515.1, 1323.5 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.64 (s, 1 H), 7.55 (m, 2 H), 7.47 (m, 1 H), 7.29 (d, 1 H, J = 2.8 Hz), 6.86 (dd, 1 H, J = 8.8, 2.8 Hz), 6.71 (d, 1 H, J = 8.8 Hz), 5.74 (br s, 2 H), 4.36 (s, 2 H), 3.89 (br s, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 140.0, 139.16, 138.5, 132.6, 131.2 (q, J = 32 Hz), 131.0, 129.3, 125.4, 124.5 (q, J = 3.7 Hz), 124.4 (q, J = 3.8 Hz), 124.2 (q, J = 271 Hz), 120.3, 106.2, 48.6; HRMS (ESI) m/z calcd for C₁₄H₁₃N₂O₃F₃ [M+H]+ 312.0954, found 312.0947.

N-(4-Amino-3-nitro)phenyl-(phenylmethoxy)-N-{[4-(pentafluorothio)phenyl]methyl}carboxamide. A solution of (4-amino-3-nitro)phenyl-[(4-(pentafluorothio)phenyl)methyl]amine (0.207 g, 0.544 mmol) and DIPEA (0.110 mL, 0.665 mmol) in 1,4-dioxane (2.8 mL) at rt was treated dropwise via syringe with benzyl chloroformate
(0.100 mL, 0.682 mmol). The resulting solution was allowed to stir for 18 h and was then quenched with H$_2$O:CH$_2$Cl$_2$ (1:1, 6.5 mL). The phases were separated and the aqueous phase was extracted with CH$_2$Cl$_2$ (3 x 5 mL). The combined organic layers were washed with brine, dried (Na$_2$SO$_4$), filtered, and the solvent evaporated to give crude N-(4-amino-3-nitro)phenyl-(phenylmethoxy)-N-{[4-(pentafluorothio)phenyl]methyl}carboxamide (0.280 g) as an orange foam that was used without further purification.

$$\text{N-(4-Amino-3-nitro)phenyl(phenylmethoxy)-N-\{[3-(pentafluorothio)phenyl]methyl\}carboxamide}$$

A solution of (4-amino-3-nitro)phenyl-[(3-(pentafluorothio)phenyl)methyl]amine (0.202 g, 0.531 mmol) and DIPEA (0.090 mL, 0.54 mmol) in 1,4-dioxane (2.8 mL) at rt was treated dropwise via syringe with benzyl chloroformate (0.080 mL, 0.55 mmol). The reaction mixture was stirred for 3 h and then quenched with 6.50 mL of H$_2$O:CH$_2$Cl$_2$ (1:1). The phases were separated and the aqueous phase was extracted with CH$_2$Cl$_2$ (3 x 5 mL). The combined organic layers were washed with brine, dried (Na$_2$SO$_4$), filtered, and the solvent was evaporated to give crude N-(4-amino-3-nitrophenyl)(phenylmethoxy)-N-{[3-(pentafluorothio)phenyl]methyl}carboxamide (0.309 g) as an orange oil which was used without further purification.
\(N-(4\text{-Amino-3-nitro})\text{phenyl(phenylmethoxy)}-N-\{[4-(trifluoromethyl)phenyl]methyl\text{carboxamide.} \) A solution of \((4\text{-amino-3-nitro})\text{phenyl\{[4-(trifluoromethyl)phenyl]methyl\}amine (0.199 g, 0.639 mmol) and DIPEA (0.110 mL, 0.666 mmol) in 1,4-dioxane (3.2 mL) at rt was treated dropwise via syringe with benzyl chloroformate (0.100 mL, 0.682 mmol). The resulting solution was allowed to stir for 4 h and was then quenched with \(\text{H}_2\text{O:CH}_2\text{Cl}_2 \,(1:1, 6.5\,\text{mL})\). The phases were separated and the aqueous phase was extracted with \(\text{CH}_2\text{Cl}_2 \,(3 \times 5\,\text{mL})\). The combined organic layers were washed with brine, dried \((\text{Na}_2\text{SO}_4)\), filtered, and the solvent was evaporated to give crude \(N-(4\text{-amino-3-nitro})\text{phenyl(phenylmethoxy)}-N-\{[4-(trifluoromethyl)phenyl]methyl\text{carboxamide (0.328 g) as a dark orange oil which was used without further purification.}\n\[
\begin{align*}
\text{N} & \text{-[4-Amino-3-nitro]phenyl(phenylmethoxy)-N{-[4-(trifluoromethyl)phenyl]methyl}carboxamide.} \\
\text{A solution of} & \ (4\text{-amino-3-nitro})\text{phenyl\{[4-(trifluoromethyl)phenyl]methyl\}amine (0.205 g, 0.659 mmol) and DIPEA (0.115 mL, 0.696 mmol) in 1,4-dioxane (3.5 mL) at rt was treated dropwise via syringe with benzyl chloroformate (0.100 mL, 0.682 mmol). The resulting solution was allowed to stir for 4 h at rt and was then quenched with \(\text{H}_2\text{O:CH}_2\text{Cl}_2 \,(1:1, 10\,\text{mL})\). The layers were separated, and the aqueous phase was extracted with \(\text{CH}_2\text{Cl}_2 \,(2 \times 15\,\text{mL})\). The combined organic phases were washed with \(\text{H}_2\text{O}\) and brine, dried \((\text{Na}_2\text{SO}_4)\), filtered, and the solvent was evaporated to give crude \(N-(4\text{-amino-3-nitro})\text{phenyl(phenylmethoxy)}-N-\{[3-(trifluoromethyl)phenyl]methyl\text{carboxamide (0.331 g) as an orange oil which was used without further purification.}\n\]
Benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[4-(pentafluorothio)benzyl]carbamate. A solution of crude \(N\)-(4-amino-3-nitro)phenyl-(phenylmethoxy)-\(N\)-\{[4-(pentafluorothio)phenyl]methyl\}carboxamide (0.050 g, 0.099 mmol) and DIPEA (0.050 mL, 0.30 mmol) in 1,4-dioxane (1.0 mL) at rt was treated dropwise via syringe with ethyl chloroformate (0.030 mL, 0.31 mmol). The resulting solution was allowed to stir at 70 °C for 24 h and was then quenched with \(\text{H}_{2}\text{O}:\text{CH}_{2}\text{Cl}_{2} \) (1:1, 5 mL). The layers were separated and the aqueous layer was extracted with \(\text{CH}_{2}\text{Cl}_{2} \) (3 x 20 mL). The combined organic layers were washed with \(\text{H}_{2}\text{O} \) and brine, dried (\(\text{MgSO}_{4} \)), filtered, and the solvent was evaporated under reduced pressure to give crude product (0.050 g) as an orange oil. The oil was purified by chromatography on SiO\(_{2} \) (30% EtOAc in hexanes) to give benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[4-(pentafluorothio)benzyl]carbamate (0.036 g, 0.063 mmol, 63%, 82% based on recovered starting material) as an orange oil: IR (\(\text{CH}_{2}\text{Cl}_{2} \)) 3365.8, 2094.7, 1738.1, 1706.7, 1515.2 cm\(^{-1}\); \(^1\)H NMR (\(\text{CDCl}_{3} \), 400 MHz) \(\delta \) 9.77 (s, 1 H), 8.54 (d, 1 H, \(J = 9.2 \) Hz), 8.04 (br s, 1 H), 7.68 (d, 2 H, \(J = 8.8 \) Hz), 7.33-7.27 (m, 5 H), 7.24-7.22 (m, 2 H), 5.19 (s, 2 H), 4.92 (s, 2 H), 4.26 (q, 2 H, \(J = 7.2 \) Hz), 1.34 (t, 3 H, \(J = 7.2 \) Hz); \(^{13}\)C NMR (\(\text{CDCl}_{3} \), 100 MHz) \(\delta \) 155.2, 153.4 (quint., \(J = 18.0 \) Hz), 153.2, 153.2, 141.0, 135.8, 135.7, 134.2, 128.8, 128.8, 128.2, 127.9, 126.6 (app. t, \(J = 4.6 \) Hz), 123.6, 121.4, 68.5, 62.3, 53.4, 14.5; HRMS (HESI) \(m/z \) calcd for \(\text{C}_{24}\text{H}_{23}\text{N}_{3}\text{O}_{6}\text{F}_{5}\text{S} \) [M+H]\(^+\) 576.1222, found 576.1221.
Benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[3-(pentafluorothio)benzyl]carbamate. A solution of crude \(N-(4\text{-amino-3-nitrophenyl})(\text{phenylmethoxy})-N\{-[3-(\text{pentafluorothio)phenyl]methyl}\}\text{carboxamide} \) (0.326 g), DIPEA (0.280 mL, 1.69 mmol), and DMAP (0.003 g, 0.02 mmol) in 1,4-dioxane (4 mL) at rt was treated dropwise via syringe with ethyl chloroformate (0.155 mL, 1.58 mmol). The resulting solution was allowed to stir at 70 \(\degree C \) for 2 d and was then quenched by the addition of \(H_2O:CH_2Cl_2 \) (1:1, 10 mL). The layers were separated and the aqueous layer extracted with \(CH_2Cl_2 \) (3 x 20 mL). The combined organic layers were washed with \(H_2O, 1 \text{ M aq. HCl, and brine, dried (MgSO}_4, \text{ filtered, and the solvent was evaporated under reduced pressure to give crude product (0.340 g) as an orange oil. The crude residue was purified by chromatography on SiO}_2 \) (20% EtOAc in hexanes) to give benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[3-(pentafluorothio)benzyl]carbamate (0.052 g) as a yellow oil which was used without further purification.

Benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[4-(trifluoromethyl)benzyl]carbamate. A solution of crude \(N-(4\text{-amino-3-nitrophenyl})(\text{phenylmethoxy})-N\{-[4-(\text{trifluoromethyl)phenyl]methyl}\}\text{carboxamide} \) (0.310 g) and DIPEA (0.670 mL, 4.05 mmol) in
1,4-dioxane (5.2 mL) at rt was treated dropwise via syringe with ethyl chloroformate (0.395 mL, 4.03 mmol). The resulting solution was allowed to stir at 70 °C for 3 d and was then quenched by the addition of H₂O:CH₂Cl₂ (1:1, 10 mL). The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with H₂O and brine, dried (Na₂SO₄), filtered, and the solvent was evaporated under reduced pressure to give crude product (0.350 g) as an orange solid. The crude solid was purified by chromatography on SiO₂ (20% EtOAc in hexanes) to give benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[4-(trifluoromethyl)benzyl]carbamate (0.194 g, 0.375 mmol, 59% over 2 steps) as an orange oil: IR (CH₂Cl₂) 3365.8, 2983.2, 1738.2, 1706.4, 1514.4, 1323.3 cm⁻¹; ¹H NMR (DMSO-d₆, 400 MHz, 353 K) δ 9.50 (br s, 1 H), 7.96 (d, 1 H, J = 2.4 Hz), 7.77 (d, 1 H, J = 8.8 Hz), 7.64 (d, 1 H, J = 8.4 Hz), 7.60 (dd, 1 H, J = 8.8, 2.4 Hz), 7.48 (d, 1 H, J = 8.0 Hz), 7.33-7.26 (m, 7 H), 5.19 (s, 2 H), 5.05 (s, 2 H), 4.15 (q, 2 H, J = 7.2 Hz), 1.24 (t, 3 H, J = 7.2 Hz); ¹³C NMR (DMSO-d₆, 100 MHz, 353 K) δ 154.2, 152.9, 141.8, 140.0, 136.8, 135.8, 131.8, 130.3, 128.0, 127.9, 127.7, 127.5, 127.1, 124.9 (q, J = 3.7 Hz), 123.8 (q, J = 270.3 Hz), 123.8, 122.5, 67.0, 60.8, 52.3, 13.8; HRMS (HESI) m/z calcd for C₂₅H₂₁N₃O₆F₃ (M-H) 516.1377, found 516.1372.

Benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[3-(trifluoromethyl)benzyl]carbamate. A solution of crude N-(4-amino-3-nitro)phenyl(phenylmethoxy)-N-[(3-(trifluoromethyl)phenyl)methyl]carboxamide (0.330 g) and DIPEA (0.545 mL, 3.30 mmol) in 1,4-dioxane (5 mL) at rt was treated dropwise via syringe with ethyl chloroformate (0.160 mL,
1.63 mmol). The resulting solution was allowed to stir at 70 °C for 2 d and was then quenched by the addition of 1:1 H2O:CH2Cl2 (10 mL), the layers were separated and the aqueous phase was extracted with CH2Cl2 (2 x 20 mL). The combined organic layers were washed with H2O (2 x 20 mL) and brine (2 x 10 mL), dried (MgSO4), filtered, and the solvent was evaporated under reduced pressure to give crude product (0.310 g) as an orange oil. The crude oil was purified by chromatography on SiO2 (20% EtOAc in hexanes) to give benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[3-(trifluoromethyl)benzyl]carbamate (0.113 g) as a yellow oil which was carried on without further purification.

\[\text{NR561}_29 \]

A solution of benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[4-(pentafluorothio)benzyl]carbamate (0.047 g, 0.082 mmol) and 10% Pd/C (0.010 g, 0.009 mmol, 10 mol%) in a mixture of 1,4-dioxane (0.46 mL) and EtOH (0.24 mL) was allowed to stir for 21 h at rt under an H2 atmosphere (balloon). The reaction mixture was diluted with Et2O (5 mL) and filtered through a pad of Celite. The organic phase was concentrated under reduced pressure to give crude product (0.037 g) as an orange oil. The crude oil was purified by chromatography on SiO2 (50% EtOAc in hexanes) to give NR561_29 (0.018 g, 0.044 mmol, 54%) as a light brown solid: Mp 146-147 °C (CH2Cl2); IR (ATR) 3377.6, 2925.7, 1697.8, 1620.9, 1525.7 cm\(^{-1}\); \(^1\)H NMR (CDCl3, 400 MHz) \(\delta\) 7.70 (d, 2 H, \(J = 8.4\) Hz), 7.43 (d, 2 H, \(J = 8.4\) Hz), 6.92 (d, 1 H, \(J = 8.4\) Hz), 6.02 (dd, 1 H, \(J = 8.4, 2.4\) Hz), 5.95 (d, 1 H, \(J = 2.4\) Hz), 4.35 (s, 2 H), 4.18 (q, 2 H, \(J = 8.4\) Hz), 6.02 (dd, 1 H, \(J = 8.4, 2.4\) Hz), 5.95 (d, 1 H, \(J = 2.4\) Hz), 4.35 (s, 2 H), 4.18 (q, 2 H, \(J = 8.4\) Hz), 6.02 (dd, 1 H, \(J = 8.4, 2.4\) Hz), 5.95 (d, 1 H, \(J = 2.4\) Hz), 4.35 (s, 2 H), 4.18 (q, 2 H, \(J = 8.4\) Hz), 6.02 (dd, 1 H, \(J = 8.4, 2.4\) Hz), 5.95 (d, 1 H, \(J = 2.4\) Hz), 4.35 (s, 2 H), 4.18 (q, 2 H, \(J = 8.4\) Hz).
7.2 Hz), 3.90 (br s, 2 H), 1.28 (t, 3 H, \(J = 7.2 \text{ Hz}\)); \(^{13}\text{C NMR (CDCl}_3\), 100 MHz\) \(\delta 155.6, 152.9\) (quint., \(J = 13.5 \text{ Hz}\), 147.4, 143.9, 142.2, 128.1, 127.3, 126.4 (quint., \(J = 4.0 \text{ Hz}\)), 114.5, 104.5, 100.8, 61.5, 47.6, 14.7; HRMS (HESI) \(m/z\) calcd for \(\text{C}_{16}\text{H}_{19}\text{N}_3\text{O}_2\text{F}_5\text{S} \) \(412.1113\), found \(412.1111\).

\[
\begin{align*}
\text{N-}[2\text{-Amino-4-} & (\{3\text{-}((\text{pentafluorothio})\text{phenyl})\text{methyl})\text{amino}\text{phenyl})\text{ethoxycarboxamide}} \\
\text{(NR561_45). A mixture of benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[3-} & (\text{pentafluorothio})\text{benzyl})\text{carbamate (0.050 g, 0.087 mmol) and 10\% Pd/C (0.010 g, 0.010 mmol)} \\
& \text{in 1,4-dioxane (0.46 mL) and EtOH (0.24 mL) was allowed to stir under an H}_2\text{ atmosphere} \\
& \text{(balloon) for 18 h. The reaction mixture was diluted with Et}_2\text{O (5 mL) and filtered through a pad} \\
& \text{of Celite. The solvent was removed under reduced pressure to give crude product (0.049 g) as an} \\
& \text{orange oil. The crude residue was purified by chromatography on SiO}_2\text{ (50\% EtOAc in hexanes)} \\
& \text{to give NR561_45 (0.027 g, 0.066 mmol, 76\%) as a light brown oil that solidified on standing:} \\
& \text{Mp 52-53} \ ^\circ\text{C (CH}_2\text{Cl}_2\); IR (ATR) 3355.4, 2931.1, 1699.4, 1623.1, 1525.2, 1229.4 cm\(^{-1}\); \(^1\text{H NMR (CDCl}_3\), 400 MHz\) \(\delta 7.73 \text{ (s, 1 H)}, 7.65 \text{ (d, 1 H, } J = 8.0 \text{ Hz)}, 7.50 \text{ (d, 1 H, } J = 7.6 \text{ Hz)}, 7.42 \text{ (app.} \\
& \text{t, 1 H, } J = 7.8 \text{ Hz)}), 6.92 \text{ (d, 1 H, } J = 8.4 \text{ Hz)}, 6.04 \text{ (dd, 1 H, } J = 8.0, 2.0 \text{ Hz)}, 5.98 \text{ (d, 1 H, } J = 2.0 \\
& \text{Hz)}, 4.34 \text{ (s, 2 H)}, 4.18 \text{ (q, 2 H, } J = 7.1 \text{ Hz)}, 3.85 \text{ (br s, 2 H)}, 1.28 \text{ (t, 3 H, } J = 7.2 \text{ Hz}); \(^{13}\text{C NMR (CDCl}_3\), 175 MHz\) \(\delta 155.6, 154.4 \text{ (quint., } J = 16.8 \text{ Hz)}, 147.4, 143.1, 141.1, 130.4, 129.1, 128.0, \\
& 124.9 \text{ (quint., } J = 4.2 \text{ Hz)}, 124.8 \text{ (quint., } J = 4.4 \text{ Hz)}, 114.5, 104.5, 100.9, 61.5, 48.1, 14.7; \\
& \text{HRMS (HESI) } m/z \text{ calcd for } \text{C}_{16}\text{H}_{19}\text{N}_3\text{O}_2\text{F}_5\text{S [M+H]}^+ \text{ 412.1113}, \text{ found 412.1101}.
\end{align*}
\]
N-[2-Amino-4-({4-(trifluoromethyl)phenyl}methyl]amino)phenyl]ethoxycarboxamide (NR561_40). A mixture of benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[4-(trifluoromethyl)benzyl]carbamate (0.090 g, 0.174 mmol) and 10% Pd/C (0.018 g, 0.017 mmol) in a mixture of 1,4-dioxane (1 mL) and EtOH (0.50 mL) was allowed to stir at rt for 18 h under an H₂ atmosphere (balloon). The reaction mixture was diluted with Et₂O (5 mL) and filtered through a pad of Celite. The organic phase was concentrated under reduced pressure to give crude product (0.051 g) as a light brown solid. The crude solid was purified by chromatography on SiO₂ (50% EtOAc in hexanes) to give NR561_40 (0.044 g, 0.12 mmol, 72%) as a grey solid: Mp 171-172 °C (CH₂Cl₂); IR (ATR) 3279.6, 2980.6, 1677.2, 1527.0 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.59 (d, 2 H, J = 8.4 Hz), 7.46 (d, 2 H, J = 8.0 Hz), 6.92 (d, 1 H, J = 8.4 Hz), 6.05 (dd, 1 H, J = 8.4, 2.4 Hz), 5.98 (d, 1 H, J = 2.4 Hz), 4.37 (s, 2 H), 4.19 (q, 2 H, J = 7.2 Hz), 4.06 (br s, 1 H), 3.74 (br s, 2 H), 1.28 (t, 3 H, J = 7.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 155.7, 147.6, 143.9, 143.2, 129.6 (q, J = 32.0 Hz), 128.1, 127.5, 125.7 (q, J = 3.7 Hz), 124.3 (q, J = 270.2 Hz), 114.3, 104.5, 100.6, 61.5, 48.0, 14.8; HRMS (HESI) m/z calcd for C₁₇H₁₉N₅O₂F₃ [M+H]⁺ 354.1424, found 354.1425.
N-[2-Amino-4-({[3-(trifluoromethyl)phenyl]methyl}amino)phenyl]ethoxycarboxamide (NR561_50). A mixture of crude benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[3-(trifluoromethyl)benzyl]carbamate (0.100 g, 0.193 mmol) and 10% Pd/C (0.020 g, 0.018 mmol, 10 mol%) in 1,4-dioxane (1 mL) and EtOH (0.50 mL) was allowed to stir at rt for 18 h under an H₂ atmosphere (balloon). The reaction mixture was diluted with Et₂O, filtered through a pad of Celite, and the solvent removed under reduced pressure to give crude product (0.067 g) as a dark brown oil, which was purified by chromatography on SiO₂ (50% EtOAc in hexanes) to give NR561_50 (0.056 g, 0.16 mmol, 24% over 3 steps) as an off-white solid: Mp 103-104 °C (CH₂Cl₂); IR (ATR) 3335.1, 2987.6, 1723.5, 1679.8, 1535.3 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.61 (s, 1 H), 7.53 (app. t, 2 H, J = 7.0 Hz), 7.46-7.42 (m, 1 H), 6.92 (d, 1 H, J = 8.0 Hz), 6.05 (dd, 1 H, J = 8.4, 2.4 Hz), 5.98 (d, 1 H, J = 2.4 Hz), 4.34 (s, 2 H), 4.19 (q, 2 H, J = 7.2 Hz), 3.76 (br s, 2 H), 1.28 (t, 3 H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 155.6, 147.6, 143.2, 140.8, 131.1 (q, J = 32.0 Hz), 130.7, 129.2, 128.0, 124.3 (q, J = 270.9 Hz), 124.2-124.1 (overlapping q.), 114.3, 104.5, 100.8, 61.5, 48.1, 14.7; HRMS (HESI) m/z calcd for C₁₇H₁₉N₃O₂F₃ [M+H]⁺ 354.1424, found 354.1421.

\[\text{CF}_{3} \]
\[\text{NH} \]
\[\text{NO}_{2} \]

(4-Amino-3-nitrophenyl)(2,2,2-trifluoro-1-phenylethyl)amine. A solution of 2-nitro-p-phenylenediamine (0.504 g, 3.13 mmol) and PTSA (0.034 g, 0.17 mmol) in toluene (15 mL) at rt was treated with 2,2,2-trifluoroacetophenone (0.544 g, 3.09 mmol). The reaction mixture was stirred at reflux for 24 h with a Dean-Stark trap, and filtered through a pad of SiO₂. The solvent was evaporated under reduced pressure to give the crude imine (0.170 g), which was suspended
in 1,4-dioxane (4 mL) and MeOH (1 mL), and NaBH₄ (0.125 g, 3.27 mmol) was added in 3 portions at 15-min intervals. The resulting solution was allowed to stir at rt for 3 h, quenched with H₂O (25 mL) and extracted with CH₂Cl₂ (3 x 20 mL). The organic phase was dried (Na₂SO₄), filtered, and the solvent was evaporated under reduced pressure. Further drying under high vacuum gave (4-amino-3-nitrophenyl)(2,2,2-trifluoro-1-phenylethyl)amine (0.120 g, 0.386 mmol, 12%) as a dark red solid: Mp 126-127 °C (CH₂Cl₂); IR (ATR) 3436.0, 3388.0, 333.4, 1581.3, 1514.4, 1326.1, 1237.6; ¹H NMR (CDCl₃, 400 MHz) δ 7.44-7.38 (m, 5 H), 7.33 (d, 1 H, J = 2.8 Hz), 6.89 (dd, 1 H, J = 9.2, 2.8 Hz), 6.69 (d, 1 H, J = 8.8 Hz), 5.75 (br s, 2 H), 4.84 (m, 1 H), 4.13 (d, 1 H, J = 7.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 139.2, 136.6, 133.6, 132.3, 129.51, 129.2, 128.0, 126.0, 125.1 (q, J = 280.3 Hz), 120.3, 108.6, 61.4 (q, J = 30.0 Hz); HRMS (HESI) m/z calcd for C₁₄H₁₃N₃O₂F₃ [M+H]⁺ 312.0954, found 312.0953.

Ethyl (2-nitro-4-((2,2,2-trifluoro-1-phenylethyl)amino)phenyl)carbamate. A solution of (4-amino-3-nitrophenyl)(2,2,2-trifluoro-1-phenylethyl)amine (0.060 g, 0.19 mmol) and DIPEA (0.065 mL, 0.39 mmol) in 1,4-dioxane (1.3 mL) at rt was treated dropwise via syringe with ethyl chloroformate (0.020 mL, 0.20 mmol). The resulting solution was allowed to stir at 50 °C for 18 h and was then quenched by the addition of 1:1 H₂O:CH₂Cl₂ (10 mL). The layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic phases were washed with H₂O (2 x 10 mL) and brine (2 x 10 mL), dried (Na₂SO₄), filtered, and the solvent was evaporated under reduced pressure to give crude product (0.100 g) as an orange-red oil that was purified by chromatography on SiO₂ (40-60% CH₂Cl₂ in hexanes) to give ethyl (2-
nitro-4-((2,2,2-trifluoro-1-phenylethyl)amino)phenyl)carbamate (0.054 g, 0.14 mmol, 73%) as a red oil: IR (CH$_2$Cl$_2$) 3373.0, 2983.9, 1719.0, 1523.1, 1324.1 cm$^{-1}$; 1H NMR (CDCl$_3$, 500 MHz) δ 9.39 (s, 1 H), 8.30 (d, 1 H, $J = 9.0$ Hz), 7.46-7.40 (m, 6 H), 6.98 (dd, 1 H, $J = 9.5, 2.2$ Hz), 4.91 (m, 1 H), 4.56 (br d, 1 H, $J = 7.0$ Hz), 4.22 (q, 2 H, $J = 7.0$ Hz), 1.31 (t, 3 H, $J = 7.0$ Hz); 13C NMR (CDCl$_3$, 125 MHz) δ 153.6, 140.7, 137.0, 133.1, 129.6, 129.3, 128.0, 127.7, 124.9 (q, $J = 280.5$ Hz), 122.7, 122.6, 121.5, 108.8, 61.9, 60.6 (q, $J = 30.4$ Hz), 14.5; HRMS (HESI) m/z calcd for C$_{17}$H$_{17}$N$_3$O$_4$F$_3$ [M+H]$^+$ 384.1166, found 384.1163.

N-{2-Amino-4-[(2,2,2-trifluoro-1-phenylethyl)amino]phenyl}ethoxycarboxamide.

(NR579_04) A suspension of ethyl (2-nitro-4-((2,2,2-trifluoro-1-phenylethyl)amino)phenyl)carbamate (0.050 g, 0.13 mmol) and 10% Pd/C (0.014 g, 0.013 mmol) was allowed to stir under an H$_2$ atmosphere (balloon) for 18 h. The reaction mixture was diluted with Et$_2$O, filtered through Celite, and the solvent evaporated under reduced pressure to give crude product (0.066 g) as a gray oil that was purified by chromatography on SiO$_2$ (0-10% EtOAc in CH$_2$Cl$_2$) to give NR579_04 (0.041 g, 0.12 mmol, 89%) as a clear, colorless oil that solidified upon standing: Mp 51-52 °C (CH$_2$Cl$_2$); IR (ATR) 3346.1, 2984.8, 1696.0, 1524.2 cm$^{-1}$; 1H NMR (CDCl$_3$, 400 MHz) δ 7.42-7.37 (m, 5 H), 6.90 (d, 1 H, $J = 8.0$ Hz), 6.05 (app. d, 1 H, $J = 8.4$ Hz), 6.01 (app. s, 1 H), 4.84 (m, 1 H), 4.28 (d, 1 H, $J = 7.2$ Hz), 4.17 (q, 2 H, $J = 7.1$ Hz), 3.72 (br s, 2 H), 1.27 (t, 3 H, $J = 6.6$ Hz); 13C NMR (CDCl$_3$, 100 MHz) δ 155.5, 145.3, 143.0, 134.2, 129.2, 129.0, 128.0, 125.1 (q, $J = 280.2$ Hz), 115.5, 105.2, 102.1, 61.5, 60.7 (q, $J = 29.8$ Hz), 14.7; HRMS (HESI) m/z calcd for C$_{17}$H$_{19}$N$_3$O$_2$F$_3$ [M+H]$^+$ 354.1424, found 354.1422.
4-Fluoro-N-methoxy-N-methylbenzamide. A solution of methoxymethylamine hydrochloride (0.634 g, 6.37 mmol) and Et₃N (0.860 mL, 6.12 mmol) in CH₂Cl₂ (3.75 mL) at 0 °C was treated dropwise via syringe with 4-fluorobenzoyl chloride (0.370 mL, 3.07 mmol) over 30 min. The reaction mixture was allowed to stir at rt for 2 h, poured into H₂O and extracted with CH₂Cl₂ (3 x 20 mL). The combined organic extracts were washed with brine, dried (MgSO₄), and the solvent was removed under reduced pressure. Further drying under high vacuum gave crude 4-fluoro-N-methoxy-N-methylbenzamide (0.672 g, 2.63 mmol, quant.) which was used without further purification: ¹H NMR (CDCl₃, 400 MHz) δ 7.74 (m, 2 H), 7.08 (m, 2 H), 3.53 (s, 3 H), 3.36 (s, 3 H); HRMS (HESI) m/z calcd for C₉H₁₁NO₂F [M+H]⁺ 184.0768, found 184.0768.

4-Fluoro[formyl-²H]benzaldehyde. To a solution of 4-fluoro-N-methoxy-N-methylbenzamide (0.062 g, 0.338 mmol) in THF (1.9 mL) at -78 °C was added LiAlD₄ (0.018 g, 0.42 mmol) portionwise. The reaction mixture was stirred for 2 h at -78 °C, quenched with H₂O at the same temperature, treated with Et₂O, and the precipitate was removed by filtration through a pad of Celite. The filtrate was washed with H₂O and brine, dried (Na₂SO₄), and concentrated under reduced pressure. Further drying under high vacuum for 1 h gave crude 4-fluoro[formyl-²H]benzaldehyde (0.032 g, 0.26 mmol) as a pale yellow oil that was used without further purification.
(4-Amino-3-nitrophenyl)[2H\textsubscript{2}(4-fluorophenyl)methyl]amine. A solution of 2-nitro-\textit{p}\text-suphenylenediamine (0.602 g, 3.73 mmol), PTSA (0.040 g, 0.21 mmol) and crude 4-fluoro[formyl-2H]benzaldehyde (0.273 g) was heated to reflux with a Dean-Stark trap for 18 h. The solution was filtered through a thin pad of SiO\textsubscript{2} and the solvent was evaporated under reduced pressure to give a crude imine (0.328 g) which was suspended in 1,4-dioxane (4 mL) and MeOH (1 mL). After addition of NaBD\textsubscript{4} (0.111 g, 2.60 mmol) in 3 portions at 15-min intervals, the reaction mixture was stirred at rt for 3 h, quenched with H\textsubscript{2}O (25 mL), and filtered to give (4-amino-3-nitrophenyl)[2H\textsubscript{2}(4-fluorophenyl)methyl]amine (0.241 g, 0.915 mmol, 42% over 2 steps) as a dark purple powder: Mp 113-114 °C (H\textsubscript{2}O); IR (ATR) 3517.2, 3497.0, 3371.2, 1577.4, 1502.5, 1329.5 cm-1; 1H NMR (CDCl\textsubscript{3}, 400 MHz) \(\delta\) 7.34-7.27 (m, 3 H), 7.28 (d, 1 H, \(J = 2.4\) Hz), 7.03 (t, 2 H, \(J = 8.6\) Hz), 6.84 (dd, 1 H, \(J = 8.8, 2.4\) Hz), 5.75 (br s, 2 H), 3.80 (br s, 1 H); 13C NMR (CDCl\textsubscript{3}, 100 MHz) \(\delta\) 162.3 (d, \(J = 244.0\) Hz), 139.4, 138.3, 134.5 (d, \(J = 3.0\) Hz), 132.5, 129.3 (d, \(J = 8.0\) Hz), 125.5, 120.2, 115.7 (d, \(J = 21.3\) Hz), 105.9, 47.7 (t, \(J = 20.6\) Hz); HRMS (HESI) \(m/z\) calcd for C\textsubscript{13}H\textsubscript{11}D\textsubscript{2}N\textsubscript{3}O\textsubscript{2}F [M+H]+ 264.1112, found 264.1110.

\textit{N}-(4-Amino-3-nitrophenyl)-\textit{N}-[2H\textsubscript{2}(4-fluorophenyl)methyl](phenylmethoxy)carboxamide.

A solution of (4-amino-3-nitrophenyl)[2H\textsubscript{2}(4-fluorophenyl)methyl]amine (0.100 g, 0.380 mmol)
and DIPEA (0.095 mL, 0.58 mmol) in 1,4-dioxane (1.9 mL) at rt was treated dropwise via syringe with benzyl chloroformate (0.060 mL, 0.41 mmol). The resulting solution was allowed to stir at rt for 18 h and was then quenched by the addition of H2O/CH2Cl2 (1:1, 10 mL). The aqueous layer was extracted with CH2Cl2 (3 x 10 mL). The combined organic layers were washed with H2O (2 x 10 mL) and brine (2 x 10 mL), dried (Na2SO4), filtered, and the solvent was evaporated under reduced pressure to give crude N-(4-amino-3-nitrophenyl)-N-[^2H2(4-fluorophenyl)methyl](phenylmethoxy)carboxamide (0.220 g) as an orange-yellow oil that was used without further purification.

Benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[^2H2(4-fluorobenzyl)]carbamate. A solution of crude N-(4-amino-3-nitrophenyl)-N-[^2H2(4-fluorophenyl)methyl](phenylmethoxy)carboxamide (0.220 g) and DIPEA (0.190 mL, 1.15 mmol) in 1,4-dioxane (3.5 mL) at rt was treated dropwise via syringe with ethyl chloroformate (0.090 mL, 0.92 mmol). The reaction mixture was stirred at 70 °C for 2 d and quenched by addition of H2O/CH2Cl2 (1:1, 20 mL). The layers were separated and the aqueous phase was extracted with CH2Cl2 (2 x 10 mL). The combined organic phases were washed with 1 M aq. HCl (2 x 10 mL) and brine (2 x 10 mL), dried (MgSO4), filtered, and the filtrate was concentrated under reduced pressure. Further drying under high vacuum gave crude product (0.320 g) as an orange-yellow solid that was purified by chromatography on SiO2 (20% EtOAc in hexanes) to give benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[^2H2(4-
fluorobenzyl]carbamate (0.100 g, 0.213 mmol, 56%) as a yellow oil: IR (CH₂Cl₂) 3364.5, 2981.5, 1738.4, 1702.4, 1509.8, 1331.4; ¹H NMR (CDCl₃, 400 MHz) δ 9.77 (s, 1 H), 8.51 (d, 1 H, J = 8.8 Hz), 7.99 (br s, 1 H), 7.36-7.30 (m, 4 H), 7.27-7.25 (m, 2 H), 7.17-7.13 (m, 2 H), 6.96 (tt, 2 H, J = 8.6, 2.3 Hz), 5.19 (s, 2 H), 4.26 (q, 2 H, J = 7.0 Hz), 1.34 (t, 3 H, J = 7.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 162.4 (d, J = 245.0 Hz), 155.2, 153.1, 136.0, 135.7, 134.7, 134.0, 132.6 (d, J = 3.2 Hz), 129.7, 128.7, 128.4, 128.1, 123.9, 121.1, 115.7 (d, J = 21.3 Hz), 68.1, 62.2, 52.8 (br), 14.5; HRMS (HESI) m/z calcd for C₂₄H₁₉D₂N₃O₆F [M-H] 468.1534, found 468.1545.

N-[2-Amino-4-([²H₂](4-fluorophenyl)methyl)amino)phenyl]ethoxycarboxamide (NR561_87). A suspension of benzyl (4-((ethoxycarbonyl)amino)-3-nitrophenyl)[²H₂](4-fluorobenzyl]carbamate (0.095 g, 0.196 mmol) and 10% Pd/C (0.022 g, 0.020 mmol) in 1,4-dioxane (1.1 mL) and EtOH (0.60 mL) was allowed to stir at rt under an H₂ atmosphere (balloon) for 18 h. The solution was diluted with Et₂O (5 mL), filtered through a pad of Celite, and the solvent was evaporated under reduced pressure to give crude product (0.078 g) as a light brown oil that was purified by chromatography on SiO₂ (55% EtOAc in hexanes) to give NR561_87 (0.045 g, 0.147 mmol, 75%) as a light brown solid: Mp 142-143 °C (CH₂Cl₂); IR (ATR) 3394.7, 3342.6, 2987.4, 1675.6, 1506.2 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.32-7.28 (m, 2 H), 7.01 (app. t, 2 H, J = 8.6 Hz), 6.91 (d, 1 H, J = 8.4 Hz), 6.04 (dd, 1 H, J = 8.4, 2.4 Hz), 5.98 (d, 1 H, J = 2.4 Hz), 4.18 (q, 2 H, J = 7.0 Hz), 3.78 (br s, 2 H), 1.28 (t, 3 H, J = 7.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 162.1 (d, J = 243.0 Hz), 155.7, 147.8, 143.1, 135.1 (d, J = 3.0 Hz), 129.0 (d, J = 8.0
Hz), 128.0, 115.5 (d, \(J = 21.2 \) Hz), 114.1, 104.4, 100.8, 61.5, 47.1 (t, \(J = 20.6 \) Hz), 14.7; HRMS (HESI) \(m/z \) calcd for \(\text{C}_{16}\text{H}_{17}\text{D}_{2}\text{N}_{3}\text{O}_{2}\text{F} [\text{M+H}]^+ \) 306.1581, found 306.1584.

(4-Amino-3-nitrophenyl)(2-thienylmethyl)amine (1-37). A mixture of thiophene-2-carboxaldehyde (0.125 mL, 1.34 mmol), 2-nitro-\(p \)-phenylenediamine (0.210 g, 1.30 mmol), PTSA (0.035 g, 0.18 mmol), and 4 Å mol. sieves (1.063 g) in CH\(_2\)Cl\(_2\) (3.1 mL) and MeOH (3.1 mL) was allowed to stir at rt for 5 h. The reaction mixture was filtered through Celite and the solvent removed under reduced pressure to give a dark brown solid that was dissolved in CH\(_2\)Cl\(_2\) (20 mL), filtered through a thin pad of SiO\(_2\) (CH\(_2\)Cl\(_2\)), and concentrated under reduced pressure to give crude imine (0.250 g) as a bright orange solid. The solid was suspended in 1,4-dioxane (1.5 mL) and MeOH (0.50 mL) and treated with NaBH\(_4\) (0.070 g, 1.83 mmol) in 3 portions at 15 min intervals. The solution was allowed to stir at rt for 20 h and quenched by the addition of H\(_2\)O/CH\(_2\)Cl\(_2\) (1:1, 30 mL). The aqueous layer was extracted with CH\(_2\)Cl\(_2\) (3 x 10 mL). The combined organic layers were washed with H\(_2\)O (2 x 10 mL) and brine (2 x 10 mL), dried (Na\(_2\)SO\(_4\)), filtered, and concentrated under reduced pressure. Further drying of the residue under high vacuum at 50 °C gave (4-amino-3-nitrophenyl)(2-thienylmethyl)amine (0.230 g, 0.923 mmol, 71%) as a dark red solid: Mp 103-105 °C (CH\(_2\)Cl\(_2\)); IR (ATR) 3506.5, 3380.5, 3116.0, 1576.6, 1518.9, 1332.9 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\), 400 MHz) \(\delta \) 7.37 (d, 1 H, \(J = 2.8 \) Hz), 7.23 (dd, 1 H, \(J = 4.8, 1.2 \) Hz), 7.03-7.02 (m, 1 H), 6.97 (dd, 1 H, \(J = 5.2, 3.6 \) Hz), 6.88 (dd, 1 H, \(J = 8.8, 2.8 \) Hz), 6.71 (d, 1 H, \(J = 8.8 \) Hz), 5.74 (br s, 2 H), 4.48 (s, 2 H), 3.83 (br s, 2 H); \(^13\)C NMR (CDCl\(_3\), 100 MHz) \(\delta \) 142.2, 139.0, 138.5, 132.6, 127.1, 125.6, 125.6, 125.0, 120.2, 106.6, 44.2; HRMS (HESI) \(m/z \) calcd for \(\text{C}_{11}\text{H}_{12}\text{N}_{3}\text{O}_{2}\text{S} [\text{M+H}]^+ \) 250.0645, found 250.0644.
(4-Amino-3-nitrophenyl)(1,3-thiazol-2-ylmethyl)amine. A suspension of 2-thiazolecarboxaldehyde (0.115 mL, 1.27 mmol), 2-nitro-p-phenylenediamine (0.209 g, 1.30 mmol), PTSA (0.025 g, 0.13 mmol) and 4 Å molecular sieves (1.15 g) in CH₂Cl₂ (3.1 mL) and MeOH (3.1 mL) was stirred for 18 h at rt and filtered through Celite. The solvent was removed under reduced pressure to give a dark brown residue that was suspended in CH₂Cl₂ (20 mL), filtered through a thin pad of SiO₂ (CH₂Cl₂), concentrated under reduced pressure to give crude imine (0.205 g) as a bright orange solid. The solid was suspended in 1,4-dioxane (2 mL) and MeOH (0.75 mL) and NaBH₄ (0.035 g, 0.92 mmol) were added. The reaction mixture was stirred at rt for 8 h and quenched by the addition of H₂O/CH₂Cl₂ (1:1, 15 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were washed with H₂O (2 x 10 mL) and brine (2 x 10 mL), dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Further drying under high vacuum at 50 °C overnight gave (4-amino-3-nitrophenyl)(1,3-thiazol-2-ylmethyl)amine (0.194 g, 0.775 mmol, 61%) as a dark red solid: Mp 161-162 °C (CH₂Cl₂); IR (ATR) 3469.8, 3380.2, 3349.8, 1584.1, 1518.8, 1384.3, 1330.6 cm⁻¹; ¹H NMR (DMSO-d₆, 500 MHz) δ 7.74 (d, 1 H, J = 3.0 Hz), 7.58 (d, 1 H, J = 3.0 Hz), 7.04 (br s, 2 H), 7.02 (d, 1 H, J = 3.0 Hz), 6.99 (d, 1 H, J = 2.5 Hz), 6.90 (d, 1 H, J = 9.0 Hz), 6.39 (t, 1 H, J = 6.0 Hz), 4.54 (d, 2 H, J = 6.0 Hz); ¹³C NMR (DMSO-d₆, 125 MHz) δ 171.8, 142.4, 140.1, 138.2, 129.9, 126.5, 120.4, 119.9, 103.0, 45.6; HRMS (HESI) m/z calcd for C₁₀H₁₁N₄O₂S [M+H]⁺ 251.0597, found 251.0595.
Ethyl (1,3-dioxobenzo[c]azolidin-2-yloxy)formate. A suspension of diphthalimidyl carbonate (0.382 g, 1.08 mmol) and EtOH (0.065 mL, 1.1 mmol) in THF (2.5 mL) was treated with Et$_3$N (0.150 mL, 1.07 mmol). Upon addition of base, the suspension turned yellow, progressing to orange over 30 min. The reaction mixture was stirred for 5 h and the solvent was evaporated. The residue was dissolved in EtOAc (25 mL) and washed with sat. aq. NaHCO$_3$ (5 x 10 mL) until the organic layer became clear. The combined aqueous washings were extracted with EtOAc (2 x 20 mL). The combined organic layers were dried (MgSO$_4$), filtered, and the solvent was evaporated under reduced pressure. Further drying under high vacuum gave ethyl (1,3-dioxobenzo[c]azolidin-2-yloxy)formate (0.230 g, 0.978 mmol, 90%) as a light yellow solid: 1H NMR (CDCl$_3$, 300 MHz) δ 7.90-7.84 (m, 2 H), 7.81-7.76 (m, 2 H), 4.40 (q, 2 H, $J = 7.2$ Hz), 1.40 (t, 3 H, $J = 7.2$ Hz); 13C NMR (CDCl$_3$, 75 MHz) δ 161.6, 152.4, 135.0, 128.8, 124.1, 67.7, 14.1.

N-{2-Amino-4-[(2-thienylmethyl)amino]phenyl}ethoxycarboxamide (NR579_46). A suspension of (4-amino-3-nitrophenyl)(2-thienylmethyl)amine (0.104 g, 0.334 mmol, 80% purity) and 10% Pd/C (0.035 g, 0.032 mmol) in 1,4-dioxane (1.7 mL) and EtOH (0.70 mL) was allowed to stir at rt for 16 h under an H$_2$ atmosphere. The reaction mixture was diluted with Et$_2$O, filtered through a pad of Celite, and concentrated under reduced pressure. Further drying
under high vacuum gave the crude triamine (0.093 g) as a dark yellow oil. A solution of this oil (0.093 g) and Et₃N (0.080 mL, 0.57 mmol) in CH₂Cl₂ (1.2 mL) at rt was treated dropwise via syringe over 15 min with a solution of ethyl (1,3-dioxobenzo[c]azolidin-2-yloxy)formate (0.050 g, 0.21 mmol) in CH₂Cl₂ (1.2 mL). The reaction mixture was allowed to stir at rt for 18 h and concentrated under reduced pressure. The crude residue was dissolved in EtOAc (20 mL) and washed with sat. aq. NaHCO₃ (5 x 10 mL). The aqueous washes were extracted with EtOAc (2 x 20 mL) and the combined organic phases were dried (MgSO₄), filtered, and concentrated under reduced pressure to give crude product (0.200 g) as a brown-green oil, which was purified by chromatography on SiO₂ (5-10% EtOAc in CH₂Cl₂) to give NR579_46 (0.037 g, 0.13 mmol, 60%) as a gray oil that solidified upon standing: Mp 95-96 °C (CH₂Cl₂); IR (ATR) 3403.4, 3287.9, 1677.0, 1518.6 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.20 (dd, 1 H, J = 5.0, 1.5 Hz), 6.99 (app. d, 1 H, J = 2.5 Hz), 6.96 (dd, 1 H, J = 5.0, 3.5 Hz), 6.93 (d, 1 H, J = 8.5 Hz), 6.09 (dd, 1 H, J = 8.3, 2.5 Hz), 6.04 (d, 1 H, J = 2.5 Hz), 4.44 (s, 2 H), 4.19 (q, 2 H, J = 7.0 Hz), 3.82 (br s, 3 H), 1.28 (t, 3 H, J = 6.5 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 155.6, 147.4, 143.1, 127.8, 127.0, 125.1, 124.7, 114.5, 104.7, 101.2, 61.5, 43.7, 14.7; HRMS (HESI) m/z calcd for C₁₄H₁₈N₃O₂S [M+H]+ 292.1120, found 292.1109.

N-{2-Amino-4-[(1,3-thiazol-2-ylmethyl)amino]phenyl}ethoxycarboxamide (NR579_38). A suspension of (4-amino-3-nitrophenyl)(1,3-thiazol-2-ylmethyl)amine (0.072 g, 0.29 mmol) and Pd/C (0.028 g, 0.026 mmol) was stirred under an H₂ atmosphere (balloon) for 18 h, diluted with Et₂O (10 mL) and filtered through a pad of Celite. The solvent was removed under reduced
pressure to give the crude triamine (0.076 g) as a dark red oil which was used without further purification. A solution of this oil (0.076 g) and Et₃N (0.075 mL, 0.53 mmol) in CH₂Cl₂ (1 mL) at rt was treated dropwise via syringe over 10 min with a solution of ethyl (1,3-dioxobenzo[c]azolidin-2-yl oxy)formate (0.061 g, 0.26 mmol) in CH₂Cl₂ (1.10 mL). The reaction mixture was stirred for 18 h, concentrated under reduced pressure, resuspended in EtOAc (20 mL), and washed with sat aq. NaHCO₃ (4 x 20 mL) until the washes were clear. The aqueous layers were extracted with EtOAc (2 x 20 mL) and the combined organic fractions were washed with H₂O (2 x 20 mL) and brine (2 x 20 mL), dried (MgSO₄), filtered, and the solvent evaporated under reduced pressure to give crude product (0.060 g) as a brown-red oil that was purified by chromatography on SiO₂ (70% EtOAc in hexanes) to give NR579_38 (0.045 g, 0.15 mmol, 59% over 2 steps) as a blue-green oil that solidified upon standing: Mp 46-47 °C (CH₂Cl₂); IR (CH₂Cl₂) 3352.87, 2981.3, 1696.9, 1621.1, 1523.2 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.72 (d, 1 H, J = 3.2 Hz), 7.24 (d, 1 H, J = 3.2 Hz), 6.91 (d, 1 H, J = 8.4 Hz), 6.16 (br s, 1 H), 6.08 (dd, 1 H, J = 8.4, 2.4 Hz), 6.02 (d, 1 H, J = 2.4 Hz), 4.59 (s, 2 H), 4.17 (q, 2 H, J = 7.2 Hz), 3.81 (br s, 2 H), 1.27 (t, 3 H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 400 MHz) δ 171.6, 155.7, 146.8, 143.1, 142.7, 127.9, 119.2, 114.8, 104.7, 101.2, 61.5, 46.5, 14.7; HRMS (HESI) m/z calcd for C₁₃H₁₇N₄O₂S [M+H]⁺ 293.1067, found 293.1063.

![Chemical Structure](image)

(4-Amino-3-nitrophenyl)|[(4-fluorophenyl)methyl]amine. A mixture of 2-nitro-p-phenylenediamine (0.998 g, 6.19 mmol) and 3 Å molecular sieves (3 g) in xylenes (30 mL) was heated to 90 °C and treated with 4-fluorobenzaldehyde (0.690 mL, 6.27 mmol). The reaction
mixture was allowed to stir for 20 h, filtered through a short pad of SiO$_2$, and allowed to cool for 6 h. A solid precipitate was filtered off and dried in vacuo to give crude imine (0.719 g), that was dissolved in 1,4-dioxane (4 mL) and MeOH (1 mL) and treated with NaBH$_4$ (0.157 g, 4.11 mmol) in 3 batches at 15 min intervals. The solution was stirred for 10 h, and quenched with H$_2$O (25 mL). The solid precipitated was filtered and dried to give colorless (4-amino-3-nitrophenyl)[(4-fluorophenyl)methyl]amine (0.573 g, 2.19 mmol, 35%): Mp 113-114 °C; IR (ATR) 3518.0, 3497.9, 3395.8, 3372.6, 1578.7, 1503.2, 1406.7, 1330.0 cm$^{-1}$; 1H NMR (CDCl$_3$, 400 MHz) δ 7.33 (app. dd, 2 H, $J = 5.4, 2.2$ Hz), 7.30 (d, 1 H, $J = 2.8$ Hz), 7.04 (app. t, 2 H, $J = 8.6$ Hz), 6.84 (dd, 1 H, $J = 8.8, 2.8$ Hz), 6.70 (d, 1 H, $J = 8.8$ Hz), 5.73 (br s, 2 H), 4.26 (d, 2 H, $J = 4.0$ Hz); 13C NMR (CDCl$_3$, 100 MHz) δ 162.3 (d, $J = 245.0$ Hz), 139.4, 138.3, 134.6 (d, $J = 2.9$ Hz), 132.6, 129.4 (d, $J = 8.0$ Hz), 125.4, 120.2, 115.7 (d, $J = 22.0$ Hz), 106.1, 48.4; HRMS (HESI) m/z calcd for C$_{13}$H$_{13}$N$_3$O$_2$F $[\text{M+H}]^+$ 262.0986, found 262.0981.

N-(4-Amino-3-nitrophenyl)-N-[(4-fluorophenyl)methyl](phenylmethoxy)carboxamide. A solution of (4-amino-3-nitrophenyl)[(4-fluorophenyl)methyl]amine (0.207 g, 0.792 mmol) and DIPEA (0.140 mL, 0.848 mmol) in 1,4-dioxane (4 mL) at rt was treated dropwise via syringe with benzyl chloroformate (0.120 mL, 0.819 mmol). The reaction mixture was allowed to stir at rt for 5 h and was then quenched with H$_2$O/CH$_2$Cl$_2$ (1:1, 6.5 mL). The aqueous layer was extracted with CH$_2$Cl$_2$ (3 x 5 mL). The combined organic layers were washed with brine, dried (Na$_2$SO$_4$), filtered, and concentrated under reduced pressure to give crude N-(4-amino-3-
nitrophenyl)-N-[(4fluorophenyl)methyl](phenylmethoxy)carboxamide (0.420 g) as an orange oil that was used without further purification.

O-Benzyl N-(4-fluorobenzyl)-N-(4-((isopropoxycarbonyl)amino)-3-nitrophenyl)carbamate.

A solution of crude N-(4-amino-3-nitrophenyl)-N-[(4fluorophenyl)methyl](phenylmethoxy)-carboxamide (0.415 g) and DIPEA (0.390 mL, 2.36 mmol) in 1,4-dioxane (6.00 mL) at rt was treated dropwise via syringe with a solution of isopropyl chloroformate in toluene (1.95 mL, 1.95 mmol, 1.0 M). The reaction mixture was stirred at 70 °C for 2 d and quenched by the addition of H₂O/CH₂Cl₂ (1:1, 10 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic layers were washed with water and brine, dried (MgSO₄), filtered, and concentrated under reduced pressure to give crude product (0.410 g) as a dark orange oil that was purified by chromatography on SiO₂ (10% EtOAc in hexanes) to give O-benzyl N-(4-fluorobenzyl)-N-(4-((isopropoxycarbonyl)amino)-3-nitrophenyl)carbamate (0.097 g) as a yellow oil along with recovered starting material (0.140 g). The starting material was recycled through the reaction procedure again to give O-benzyl N-(4-fluorobenzyl)-N-(4-((isopropoxycarbonyl)amino)-3-nitrophenyl)carbamate (0.050 g, 0.147 g total, 0.305 mmol, 39% over two steps) as a yellow oil: IR (CH₂Cl₂) 3367.4, 2982.2, 1735.0, 1705.4, 1510.6, 1338.3 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.72 (s, 1 H), 8.52 (d, 1 H, J = 8.8 Hz), 7.98 (br s, 1 H), 7.36-7.25 (m, 5 H), 7.15 (app. t, 2 H, J = 6.8 Hz), 6.96 (t, 2 H, J = 8.8 Hz), 5.19 (s, 2 H), 5.08-4.96 (m, 2 H), 4.84 (s, 2 H), 1.32 (d, 6 H, J = 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 162.4 (d, J =
245.0 Hz), 155.3, 152.8, 136.0, 134.7, 134.2, 132.8 (d, \(J = 3.2 \) Hz), 129.8, 128.7, 128.4, 128.1, 124.0, 121.1, 115.8 (d, \(J = 21.3 \) Hz); HRMS (HESI) \(m/z \) calcd for \(C_{25}H_{24}N_{3}O_{6}F \) [M-H]\(^-\) 480.1565, found 480.1575.

\[
\text{N-(2-Amino-4-\{[(4-fluorophenyl)methyl]amino\}phenyl)(1-methylethoxy)carboxamide} \]

(NR561_62). A suspension of \(O \)-benzyl \(N \)-(4-fluorobenzyl)-\(N \)-(4-((isopropoxycarbonyl)amino)-3-nitrophenyl)carbamate (0.049 g, 0.10 mmol) and 10% Pd/C (0.013 g, 0.012 mmol, 10 mol%) in 1,4-dioxane (0.60 mL) and EtOH (0.30 mL) was allowed to stir at rt for 18 h under an \(\text{H}_2 \) atmosphere (balloon). The reaction mixture was diluted with \(\text{Et}_2 \text{O} \) (5 mL), filtered through Celite, and the solvent was evaporated under reduced pressure to give crude product (0.033 g) as a brown oil that was purified by chromatography on \(\text{SiO}_2 \) (50% EtOAc in hexanes) to give NR561_62 (0.024 g, 0.076 mmol, 74%) as an off-white solid: Mp 171-172 °C (\(\text{CH}_2\text{Cl}_2 \)); IR (ATR) 3396.4, 3342.9, 3289.3, 2981.7, 1674.8; \(^1\text{H} \) NMR (CDCl\(_3\), 400 MHz) \(\delta \) 7.31 (app. dd, 2 H, \(J = 8.4, 5.6 \) Hz), 7.01 (app. t, 2 H, \(J = 10.2 \) Hz), 6.92 (d, 1 H, \(J = 8.0 \) Hz), 6.06 (dd, 1 H, \(J = 8.4, 2.4 \) Hz), 6.00 (d, 1 H, \(J = 2.4 \) Hz), 4.97 (m, 1 H), 4.25 (s, 2 H), 3.81 (br s, 2 H), 1.27 (d, 6 H, \(J = 6.4 \) Hz); 13C NMR (CDCl\(_3\), 100 MHz) \(\delta \) 162.2 (d, \(J = 244.0 \) Hz), 155.3, 147.7, 143.1, 135.3 (d, \(J = 2.9 \) Hz), 129.1 (d, \(J = 7.9 \) Hz), 127.8, 115.6 (d, \(J = 21.2 \) Hz), 114.4, 104.5, 100.8, 68.9, 47.8, 22.3; HRMS (HESI) \(m/z \) calcd for \(C_{17}H_{21}N_{3}O_{2}F \) [M-H]\(^-\) 318.1612, found 318.1611.
(3,4-Diaminophenyl)[(4-fluorophenyl)methyl]amine. A suspension of (4-amino-3-nitrophenyl)[(4-fluorophenyl)methyl]amine (0.101 g, 0.321 mmol) and 10% Pd/C (0.035 g, 0.032 mmol) in 1,4-dioxane (1.6 mL) and EtOH (0.80 mL) was allowed to stir at rt under an H₂ atmosphere (balloon) for 18 h. The reaction mixture was diluted with Et₂O (10 mL), filtered through a pad of celite, and concentrated under reduced pressure. Further drying under high vacuum gave crude (3,4-diaminophenyl)[(4-fluorophenyl)methyl]amine (0.077 g) as a brown oil which was used without further purification.

2-{{(3-Methyloxetan-3-yI)methyl}sulfinyl}ethyl(1,3-dioxobenzo[c]azolidin-2-ylOxy)formate. A suspension of diphthalimidyl carbonate (0.380 g, 1.08 mmol) and MMS-350 sulfoxide alcohol (Sprachman et al., 2012, 10, 269-277) (0.195 g, 1.09 mmol) in THF (5 mL) was treated with Et₃N (0.145 mL, 1.03 mmol). Upon addition of base, the suspension turned yellow, eventually progressing to a clear orange solution after 20 min. The reaction mixture was stirred for 2 h, concentrated under reduced pressure, dissolved in EtOAc (25 mL) and washed with saturated aqueous NaHCO₃ (5 x 3 mL) until the organic layer became clear. The combined aqueous washings were extracted with EtOAc (2 x 10 mL). The combined organic layers were dried (MgSO₄) and concentrated under reduced pressure to give 1-2-{{(3-methyloxetan-3-}
yl)methyl]sulfinyl}ethyl(1,3-dioxobenzo[c]azolidin-2-yl)oxy)formate (0.265 g, 0.721 mmol, 66%) as a foaming solid which was used without further purification.

2-(((3-Methyloxetan-3-yl)methyl)sulfinyl)ethyl (2-amino-4-((4-fluorobenzyl)amino)phenyl)carbamate (NR579_36). A solution of crude (3,4-diaminophenyl][(4-fluorophenyl)methyl]amine (0.062 g, 0.27 mmol) and Et₃N (0.070 mL, 0.50 mmol) in CH₂Cl₂ (1.00 mL) was treated dropwise via syringe over 10 min with a solution of crude 1-2-{{(3-methyloxetan-3-yl)methyl}sulfinyl}ethyl(1,3-dioxobenzo[c]azolidin-2-yl)oxy)formate (0.095 g, 0.26 mmol) in CH₂Cl₂ (1.00 mL). The reaction mixture was stirred for 18 h at rt, concentrated under reduced pressure, dissolved in EtOAc (20 mL), and washed with sat. aq. NaHCO₃ (3 x 10 mL). The combined aqueous layers were extracted with EtOAc (2 x 20 mL) and the combined organic layers were dried (MgSO₄), filtered and concentrated under reduced pressure to give crude product (0.090 g) as a dark green oil that was purified by chromatography on SiO₂ (3-5% MeOH in CH₂Cl₂) to give NR579_36 (0.041 g, 0.094 mmol, 39% over two steps) as a light brown oil: IR (CH₂Cl₂) 3362.9, 2257.0, 1712.8, 1619.2, 1525.3, 1508.3 cm⁻¹; ¹H NMR (DMSO-d₆, 500 MHz, 323 K) δ 7.99 (br s, 1 H), 7.38-7.35 (m, 2 H), 7.09 (t, 2 H, J = 8.8 Hz), 6.73 (d, 1 H, J = 8.5 Hz), 5.99 (d, 1 H, J = 2.0 Hz), 5.88 (dd, 1 H, J = 8.5, 2.5 Hz), 5.56 (s, 1 H), 4.64 (d, 1 H, J = 5.5 Hz), 4.55 (d, 1 H, J = 5.5 Hz), 4.45-4.31 (m, 5 H), 4.24 (d, 1 H, J = 6.0 Hz), 4.19 (d, 2 H, J = 4.5 Hz), 3.19-3.13 (m, 2 H), 3.03-3.00 (m, 2 H), 1.49 (s, 3 H); ¹³C NMR (DMSO-d₆, 125 MHz, 323 K) δ 160.7 (d, J = 240.0 Hz), 154.2, 147.1, 143.2,
136.4, 128.5 (d, \(J = 7.5\) Hz), 126.9, 114.3 (d, \(J = 21.3\) Hz), 112.7, 101.7, 98.9, 90.0, 80.6, 59.8, 56.7, 51.7, 45.9, 37.6, 23.0; HRMS (HESI) \(m/z\) calcd for C\(_{21}\)H\(_{27}\)N\(_3\)O\(_4\)FS [M+H]\(^+\) 436.1701, found 436.1698.

(3-Methyloxetan-3-yl)methyl(1,3-dioxobenzo[c]azolidin-2-yloxy)formate. A suspension of diphthalimidyl carbonate (0.381 g, 1.08 mmol) and 3-methyl-3-oxetanemethanol (0.110 mL, 1.08 mmol) in THF (5 mL) was treated with Et\(_3\)N (0.160 mL, 1.14 mmol). Upon addition of base, the suspension turned yellow, progressing to orange over 2 h. The reaction mixture was stirred for 14 h, concentrated under reduced pressure, dissolved in EtOAc (25 mL) and washed with sat. aq. NaHCO\(_3\) (5 x 10 mL) until the organic layer became clear. The combined aqueous washings were extracted with EtOAc (2 x 20 mL). The combined organic layers were dried (MgSO\(_4\)), filtered, and concentrated under reduced pressure. Further drying under high vacuum gave (3-methyloxetan-3-yl)methyl(1,3-dioxobenzo[c]azolidin-2-yloxy)formate (0.255 g, 0.876 mmol, 81%) as a clear, light yellow oil: IR (CH\(_2\)Cl\(_2\)) 2965.4, 2875.7, 1811.8, 1788.7, 1742.0 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\), 400 MHz) \(\delta\) 7.91-7.88 (m, 2 H), 7.81-7.79 (m, 2 H), 4.54 (d, 2 H, \(J = 6.4\) Hz), 4.47 (s, 2 H), 4.43 (d, 2 H, \(J = 6.0\) Hz), 1.41 (s, 3 H); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz) 161.5, 152.7, 135.1, 128.8, 124.3, 79.1, 75.4, 39.5, 20.8; HRMS (HESI) \(m/z\) calcd for C\(_{14}\)H\(_{14}\)NO\(_6\) [M+H]\(^+\) 292.0816, found 292.0819.
N-(2-Amino-4-\{[(4-fluorophenyl)methyl]amino\}phenyl][(3-methyloxetan-3-yl)methoxy] carboxamide (NR579_45). A solution of crude (3,4-diaminophenyl)[(4-fluorophenyl)methyl]amine (0.077 g) and Et₃N (0.090 mL, 0.64 mmol) in CH₂Cl₂ (1.30 mL) at rt was treated dropwise via syringe over 15 min with a solution of (3-methyloxetan-3-yl)methyl(1,3-dioxobenzo[c]azolidin-2-yl)formate (0.101 g, 0.347 mmol) in CH₂Cl₂ (1.30 mL). The reaction mixture was allowed to stir for 18 h, concentrated under reduced pressure, dissolved in EtOAc (20 mL), and washed with sat. aq. NaHCO₃ (3 x 10 mL). The combined aqueous washes were extracted with EtOAc (2 x 20 mL) and the combined organic layers were dried (MgSO₄), filtered, and the solvent evaporated under reduced pressure to give crude product (0.110 g) as an olive green oil that was purified by chromatography on SiO₂ (40-50% EtOAc in hexanes) to give NR579_45 (0.033 g, 0.092 mmol, 29% over 2 steps) as a dark brown oil: IR (CH₂Cl₂) 3346.5, 2960.4, 2877.0, 1701.7, 1619.5, 1524.5, 1508.1 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.30 (dd, 2 H, J = 8.2, 5.4 Hz), 7.02 (app. t, 2 H, J = 8.6 Hz), 6.93 (d, 1 H, J = 7.6 Hz), 6.21 (br s, 1 H), 6.06 (d, 1 H, J = 8.4 Hz), 6.00 (s, 1 H), 4.58 (app. br s, 2 H), 4.39 (app. br s, 2 H), 4.25 (s, 2 H), 4.20 (s, 2 H), 3.80 (br s, 3 H), 1.35 (s, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 161.2 (d, J = 243.0 Hz), 155.5, 147.9, 143.1, 135.2 (d, J = 3.0 Hz), 129.0 (d, J = 8.0 Hz), 127.9, 115.6 (d, J = 21.0 Hz), 113.9, 104.6, 100.8, 79.6, 69.4, 47.7, 39.5, 21.3; HRMS (HESI) m/z calcd for C₁₉H₂₃N₃O₃F [M+H]⁺ 360.1723, found 360.1712.
2-Fluoro-4-nitro-N\(^1\)-(3-(trifluoromethyl)benzyl)benzene-1,3-diamine. To a stirred solution of 2,3-difluoro-6-nitroaniline (0.200 g, 1.11 mmol, 1.00 equiv) in dry DMSO (4.6 mL) were added 3-(trifluoromethyl)benzylamine (0.195 mL, 1.34 mmol, 1.2 equiv) followed by Et\(_3\)N (0.135 g, 1.34 mmol, 1.2 equiv) and I\(_2\) (cat. 2 mg). The reaction mixture was heated to 120 °C for 24 h, cooled to room temperature, diluted with water (25 mL) and extracted with EtOAc (3 x 15 mL). The combined organic layers were washed with brine, dried (Na\(_2\)SO\(_4\)), filtered and concentrated under reduced pressure. The residue was purified by chromatography on SiO\(_2\) (EtOAc/hexanes, 1:10 to 1:4 to 1:3) to afford 2-fluoro-4-nitro-N\(^1\)-(3-(trifluoromethyl)benzyl)benzene-1,3-diamine as a yellow solid (0.280 g, 76%): Mp 156.0-157.2 °C; IR (ATR) 3495.2, 3383.4, 1627.4, 1480.1, 1411.1, 1275.1, 1250.8, 1120.3, 1070.0, 797.8 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.86 (dd, \(J = 9.6, 1.6\) Hz, 1 H), 7.59-7.57 (m, 2 H), 7.54-7.47 (m, 2 H), 6.15-6.00 (m, 3 H), 4.93 (br, 1 H), 4.54 (d, \(J = 6.0\) Hz, 2 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 140.9 (d, \(J = 9.5\) Hz), 138.9, 138.0 (d, \(J = 228.6\) Hz), 135.2 (d, \(J = 12.9\) Hz), 131.5 (q, \(J = 32.5\) Hz), 130.5, 129.6, 125.6 (d, \(J = 3.5\) Hz), 124.9 (q, \(J = 3.7\) Hz), 124.1 (q, \(J = 272.4\) Hz), 124.0 (q, \(J = 3.7\) Hz), 123.7 (d, \(J = 2.9\) Hz), 100.7 (d, \(J = 2.9\) Hz), 46.8; \(^{19}\)F NMR (471 MHz , CDCl\(_3\)) \(\delta\) -62.7 (s, 3 F), -160.6 (s, 1 F); HRMS (HESI) \(m/z\) calcd for C\(_{14}\)H\(_{12}\)N\(_3\)O\(_2\)F\(_4\) [M+H]\(^+\) 330.0860, found 330.0858.
3-Fluoro-N^4-(3-(trifluoromethyl)benzyl)benzene-1,2,4-triamine. To a stirred solution of 2-fluoro-4-nitro-N^1-(3-(trifluoromethyl)benzyl)benzene-1,3-diamine (0.280 g, 0.85 mmol) in MeOH (2 mL) was added zinc powder (0.278 g, 4.25 mmol) followed by the dropwise addition of saturated ammonium chloride (0.80 mL). The reaction mixture was stirred vigorously at room temperature overnight, diluted with EtOAc (2 mL) and water (1 mL), and filtered through Celite. The Celite was washed with EtOAc and the solution was extracted with EtOAc (3 x 5 mL). The combined organic layers were dried (Na_2SO_4) and concentrated to afford crude product as a dark red solid (0.190 g, 75%) that was used in the next step without further purification: ^1H NMR (400 MHz, CDCl_3) δ 7.63 (s, 1 H), 7.56 (d, 1 H, J = 7.6 Hz), 7.52 (d, 1 H, J = 7.6 Hz), 7.44 (t, 1 H, J = 7.6 Hz), 6.37 (dd, 1 H, J = 8.4, 2.0 Hz), 5.99 (t, 1 H, J = 8.8 Hz), 4.36 (s, 2 H), 3.98 (br s, 1 H), 3.52 (br s, 2 H), 3.10 (br s, 2 H). ^19F NMR (471 MHz, CDCl_3) δ -62.5 (s, 3 F), -155.8 (s, 1 F).

Ethyl (2-amino-3-fluoro-4-((3-(trifluoromethyl)benzyl)amino)phenyl)carbamate (RL648_73). An oven-dried 5-mL round bottomed flask equipped with a magnetic stir bar under argon was charged at 0 °C with 3-fluoro-N^4-(3-(trifluoromethyl)benzyl)benzene-1,2,4-triamine (0.06 g, 0.20 mmol), CH_2Cl_2 (1 mL) and DIPEA (0.043 mL, 0.25 mmol). Ethyl chloroformate (0.02 mL, 0.20 mmol) was added dropwise via syringe at 0 °C. The resulting mixture was stirred for 1 h at 0 °C and for 3 h at room temperature, and quenched by addition of water. The aqueous layer was extracted with CH_2Cl_2 (3 x 2 mL). The combined organic extracts were dried (Na_2SO_4) and concentrated under reduced pressure, and the residue was purified by chromatography on
SiO$_2$ (EtOAc/hexanes, 4:1 to 3:1) to afford RL648_73 as a dark red solid (0.045 g, 60%). Recrystallization from CH$_2$Cl$_2$/hexanes gave colorless crystals: Mp 129.3-129.7 °C; IR (ATR) 3405.8, 3290.2, 1675.9, 1452.2, 1329.1, 1246.2, 1159.5, 1071.9, 915.3, 700.9 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.61 (s, 1 H), 7.54 (app t, 2 H, J = 7.2 Hz), 7.45 (t, 1 H, J = 7.6 Hz), 6.74 (dd, 1 H, J = 8.4, 1.2 Hz), 6.11 (br s, 1 H), 6.02 (t, 1 H, J = 8.8 Hz), 4.41 (d, 2 H, J = 5.2 Hz), 4.30 (br s, 1 H), 4.20 (q, 2 H, J = 7.2 Hz), 3.86 (br s, 2 H), 1.28 (t, 3 H, J = 7.2 Hz); 13C NMR (100 MHz, acetone-d$_6$) δ 156.0, 143.1, 141.8 (d, J = 227.9 Hz), 135.5 (d, J = 9.7 Hz), 132.4, 131.8, 130.9 (q, J = 31.8 Hz), 130.1, 125.5 (q, J = 271.5 Hz), 124.5 (q, J = 3.9 Hz), 124.3 (q, J = 3.9 Hz), 122.3, 116.5, 101.3, 61.2, 47.4, 15.0; 19F NMR (376 MHz, CDCl$_3$) δ -62.6 (s, 3 F), -155.5 (s, 1 F); HRMS (HEST) m/z calcld for C$_{17}$H$_{18}$N$_3$O$_2$F$_4$ [M+H]$^+$ 372.1330, found 372.1328.

2-Fluoro-4-nitro-N^1-(4-(trifluoromethyl)benzyl)benzene-1,3-diamine. A solution of 2,3-difluoro-6-nitroaniline (0.100 g, 0.557 mmol, 1.00 equiv) in dry DMSO (4.6 mL) was treated with 4-(trifluoromethyl)benzylamine (0.081 mL, 0.557 mmol, 1.00 equiv) followed by Et$_3$N (0.09 mL, 0.669 mmol, 1.20 equiv) and I$_2$ (cat. 1 mg). The reaction mixture was heated to 120 °C for 24 h, cooled to room temperature, diluted with water (25 mL) and extracted with EtOAc (3 x 15 mL). The combined organic layers were washed with brine, dried (Na$_2$SO$_4$), filtered and concentrated under reduced pressure. The residue was purified by chromatography on SiO$_2$ (EtOAc/hexanes, 1:10 to 1:5 to 1:3) to afford the 2-fluoro-4-nitro-N^1-(4-(trifluoromethyl)benzyl)benzene-1,3-diamine (0.120 g, 65 %) as a yellow solid: Mp 165.4-166.7
°C; IR (ATR) 3487.3, 3377.3, 1629.0, 1548.9, 1479.9, 1410.9, 1328.9, 1274.9, 1235.7, 1200.3, 1178.0, 1153.7, 1090.4, 1066.1, 1015.8, 786.5, 754.9 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 7.86 (dd, 1 H, $J = 9.5, 1.0$ Hz), 7.63 (d, 2 H, $J = 8.0$ Hz), 7.44 (d, 2 H, $J = 8.0$ Hz), 6.00-6.12 (m, 3 H), 4.94 (br s, 1 H), 4.55 (d, $J = 6.0$ Hz, 2 H); 13C NMR (100 MHz, acetone-d$_6$) δ 144.2 (d, $J = 1.0$ Hz), 141.5 (d, $J = 9.0$ Hz), 137.6 (d, $J = 227.0$ Hz), 135.8 (d, $J = 13.0$ Hz), 128.8 (q, $J = 32.0$ Hz), 127.6, 125.4 (q, $J = 4.0$ Hz), 124.5 (d, $J = 4.0$ Hz), 124.5 (q, $J = 269.0$ Hz), 122.9 (d, $J = 2.0$ Hz), 100.7 (d, $J = 4.0$ Hz), 45.5; 19F NMR (376 MHz, CDCl$_3$) δ -62.9 (s, 3 F), -160.7 (s, 1 F); HRMS (HESI) m/z calcd for C$_{14}$H$_{12}$N$_3$O$_2$F$_4$ [M+H]$^+$ 330.0860, found 330.0858.

3-Fluoro-N^4-(4-(trifluoromethyl)benzyl)benzene-1,2,4-triamine. To a solution of 2-fluoro-4-nitro-N^1-(4-(trifluoromethyl)benzyl)benzene-1,3-diamine (0.066 g, 0.2 mmol) in MeOH (0.5 mL) was added zinc powder (0.066 g, 1.00 mmol) followed by the dropwise addition of a solution of saturated ammonium chloride (0.19 mL). The reaction mixture was stirred vigorously at room temperature for 5 h and filtered through Celite. The Celite was washed with EtOAc and the aqueous solution was extracted with EtOAc (3 x 2 mL). The combined organic layers were dried (Na$_2$SO$_4$) and concentrated to afford 3-fluoro-N^4-(4-(trifluoromethyl)benzyl)benzene-1,2,4-triamine (0.060 g, 100%) as a dark red solid that was used in the next step without further purification: 1H NMR (400 MHz, CDCl$_3$) δ 7.58 (d, 2 H, $J = 8.0$ Hz), 7.47 (d, 2 H, $J = 8.0$ Hz), 6.35 (dd, 1 H, $J = 8.4, 1.6$ Hz), 5.99 (t, 1 H, $J = 8.4$ Hz), 4.37 (s, 2 H), 4.02 (br s, 1 H), 3.52 (br s, 2 H), 3.13 (br s, 2 H); HRMS (HESI) m/z calcd for C$_{14}$H$_{14}$N$_3$F$_4$ [M+H]$^+$ 300.1118, found 300.1113.
Ethyl (2-amino-3-fluoro-4-((4-(trifluoromethyl)benzyl)amino)phenyl)carbamate (RL648_81). An oven-dried 5-mL round bottomed flask equipped with a magnetic stir bar under argon was charged at 0 °C with 3-fluoro-N^4-(4-(trifluoromethyl)benzyl)benzene-1,2,4-triamine (0.06 g, 0.20 mmol), CH_2Cl_2 (1 mL) and DIPEA (0.043 mL, 0.25 mmol). Ethyl chloroformate (0.02 mL, 0.20 mmol) was added dropwise via syringe at 0 °C. The reaction mixture was stirred for 1 h at 0 °C and then for 3 h at room temperature, quenched with water, and extracted with CH_2Cl_2 (3 x 2 mL). The combined organic extracts were dried (Na_2SO_4) and concentrated under reduced pressure. The residue was purified by chromatography on SiO_2 (EtOAc/hexanes, 4:1 to 3:1) to afford a dark red solid. Recrystallization from CH_2Cl_2/hexanes gave RL648_81 (0.035 g, 47%) as colorless crystals: Mp 171.4-172.2 °C; IR (ATR) 3399.7, 3338.2, 3299.0, 1675.6, 1643.9, 1617.8, 1528.4, 1489.2, 1478.0, 1442.6, 1323.3, 1248.8, 1157.5, 1112.7, 1103.4, 825.7, 781.0, 775.4, 767.9, 672.9 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl_3) \(\delta\) 7.59 (d, 2 H, \(J = 8.0\) Hz), 7.46 (d, \(J = 8.0\) Hz), 6.73 (d, \(J = 8.4\) Hz), 6.13 (br s, 1 H), 5.99 (t, 1 H, \(J = 8.8\) Hz), 4.42 (s, 2 H), 4.33 (br s, 1 H), 4.19 (q, 2 H, \(J = 7.2\) Hz), 3.86 (br s, 2 H), 1.29 (t, 3 H, \(J = 7.2\) Hz); \(^13\)C NMR (100 MHz, acetone-d_6) \(\delta\) 156.0, 146.4, 141.7 (d, \(J = 227.7\) Hz), 135.4, 132.5, 129.3 (q, \(J = 32.0\) Hz), 128.5, 126.1 (q, \(J = 3.9\) Hz), 125.5 (q, \(J = 271.0\) Hz), 122.3, 116.4, 101.3, 61.2, 47.4, 15.0; \(^19\)F NMR (471 MHz, CDCl_3) \(\delta\) -62.5 (s, 3 F), -156.1 (s,1 F); HRMS (HESI) \(m/z\) calcd for C_{17}H_{18}N_{3}O_{2}F_{4} [M+H]^+ 372.1330, found 372.1327.
2-Fluoro-N1-(4-fluorobenzyl)-4-nitrobenzene-1,3-diamine. A solution of 2,3-difluoro-6-nitroaniline (1.00 g, 5.57 mmol, 1.00 equiv) in dry DMSO (6 mL) was treated with 4-fluorobenzylamine (0.79 mL, 6.68 mmol, 1.20 equiv) followed by Et\textsubscript{3}N (0.93 mL, 6.68 mmol, 1.2 equiv) and I\textsubscript{2} (cat. 5 mg). The reaction mixture was heated to 120 °C for 24 h, cooled to room temperature, quenched with water (30 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with brine, dried (Na\textsubscript{2}SO\textsubscript{4}), filtered and concentrated under reduced pressure. The residue was treated with a small amount of Et\textsubscript{2}O (5 mL), sonicated, and filtered. The filter cake was washed with Et\textsubscript{2}O (3 x 3 mL) to afford product (1.20 g) as a yellow solid. The filtrate was concentrated in vacuo and the residue was purified by chromatography on SiO\textsubscript{2} (EtOAc/hexanes/Et\textsubscript{3}N, 1:4:0.1 to 1:3:0.1) to afford additional product (0.2 g) which was combined with the earlier fraction to provide 2-fluoro-N1-(4-fluorobenzyl)-4-nitrobenzene-1,3-diamine (1.40 g, 90%) as a yellow solid: Mp 195.0-195.7 °C; IR (ATR) 3504.6, 3387.1, 3329.3, 3070.2, 2950.9, 1625.5, 1601.3, 1578.9, 1549.1, 1506.2, 1483.8, 1267.6, 1239.6, 1174.4, 1086.8, 991.7, 848.2, 837.0, 820.2, 805.3, 751.2 cm-1; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.90 (dd, 1 H, \textit{J} = 9.6, 2.0 Hz), 7.33 (dd, 2 H, \textit{J} = 8.4, 5.2 Hz), 7.12-7.06 (m, 2 H), 6.12 (dd, \textit{J} = 9.6, 8.0 Hz), 6.07 (br s, 2 H), 4.86 (br s, 1 H), 4.47 (s, 2 H); 13C NMR (125 MHz, acetone-d\textsubscript{6}) δ 163.0 (d, \textit{J} = 243.2 Hz), 142.6 (d, \textit{J} = 9.3 Hz), 138.5 (d, \textit{J} = 228.2 Hz), 136.7 (d, \textit{J} = 13.4 Hz), 136.2 (d, \textit{J} = 3.4 Hz), 129.9 (d, \textit{J} = 8.2 Hz), 125.4, 123.9 (d, \textit{J} = 2.6 Hz), 116.1 (d, \textit{J} = 21.6 Hz), 101.8 (d, \textit{J} = 3.5 Hz), 46.2; 19F NMR (376 MHz, CDCl\textsubscript{3}) δ -114.3 (s, 1 F), -161.1 (s, 1 F); HRMS (HESI) \textit{m/z} calcd for C\textsubscript{13}H\textsubscript{12}N\textsubscript{3}O\textsubscript{2}F\textsubscript{2}[M+H]+ 280.0892, found 280.0890.
3-Fluoro-\(N^d\)-(4-fluorobenzyl)benzene-1,2,4-triamine. A stirred solution of 2-fluoro-\(N^l\)-(4-fluorobenzyl)-4-nitrobenzene-1,3-diamine (0.200 g, 0.716 mmol) in MeOH (2 mL) was treated with zinc powder (0.230 g, 3.58 mmol) followed by the dropwise addition of a solution of saturated ammonium chloride (0.68 mL). The reaction mixture was stirred vigorously at room temperature overnight, and filtered through Celite. The Celite was washed with EtOAc and the filtrate was extracted with EtOAc (3 x 3 mL). The combined organic layers were dried (Na\(_2\)SO\(_4\)) and concentrated under reduced pressure to afford 3-fluoro-\(N^d\)-(4-fluorobenzyl)benzene-1,2,4-triamine (0.120 g, 67%) as a dark red solid that was used in the next step without further purification: \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.32 (dd, 2 H, \(J = 8.5, 5.5\) Hz), 7.04-6.98 (m, 2H), 6.38 (d, 1 H, \(J = 8.5\) Hz), 6.03 (t, 1 H, \(J = 8.5\) Hz), 4.26 (s, 2 H), 3.21 (br, 5 H); \(^{19}\)F NMR (471 MHz, CDCl\(_3\)) \(\delta\) -115.7 (s, 1 F), -155.8 (s, 1 F); HRMS (HESI) \(m/z\) calcld for C\(_{13}\)H\(_{14}\)N\(_3\)F\(_2\) [M+H]\(^+\) 250.1150, found 250.1148.

Isopropyl (2-amino-3-fluoro-4-((4-fluorobenzyl)amino)phenyl)carbamate (RL648_86). An oven-dried 5-mL round bottomed flask equipped with a magnetic stir bar under argon was charged at 0 °C with 3-fluoro-\(N^d\)-(4-fluorobenzyl)benzene-1,2,4-triamine (0.120 g, 0.48 mmol), CH\(_2\)Cl\(_2\) (2.5 mL) and DIPEA (0.10 mL, 0.60 mmol). Isopropyl chloroformate (1 M in toluene, 0.48 mL) was added dropwise via syringe at 0 °C. The reaction mixture was stirred for 1 h at 0
°C, for 3 h at room temperature, and quenched by addition of water. The aqueous layer was extracted with CH₂Cl₂ (3 x 4 mL), and the combined organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by chromatography on SiO₂ (EtOAc/hexanes, 4:1 to 3:1) to give a light red solid, which was washed with a small amount of Et₂O to afford RL648_86 (0.035 g, 21%) as a colorless solid: Mp 177.5-178.2 °C; IR (ATR) 3407.6, 3338.7, 3295.8, 1675.9, 1646.0, 1618.1, 1532.3, 1487.6, 1442.8, 1323.5, 1284.4, 1263.9, 1249.0, 1155.8, 1112.9, 1066.3, 823.9, 781.1 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.21 (dd, 2 H, J = 8.5, 5.5 Hz), 7.02 (app t, 2 H, J = 8.5 Hz), 6.74 (d, 1 H, J = 8.5 Hz), 6.11 (br s, 1 H), 6.06 (t, 1 H, J = 8.5 Hz), 4.98 (sept, 1 H, J = 6.0 Hz), 4.31 (d, 2 H, J = 3.0 Hz), 4.19 (br s, 1 H), 3.86 (br s, 2 H), 1.28 (d, 6 H, J = 6.0 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 162.2 (d, J = 245.2 Hz), 155.1, 141.4 (d, J = 233.8 Hz), 135.1 (d, J = 10.4 Hz), 135.0 (d, J = 3.1 Hz), 130.8 (d, J = 11.4 Hz), 129.0 (d, J = 8.1 Hz), 121.6, 115.6 (d, J = 21.5 Hz), 115.5, 102.0, 69.2, 47.4, 22.2; ¹⁹F NMR (471 MHz, CDCl₃) δ -115.5 (s, 1 F), -156.2 (s, 1 F); HRMS (HESI) m/z calcd for C₁₇H₂₀N₃O₂F₂[M+H]+ 336.1518, found 336.1518.

2-Fluoro-4-nitro-N¹-(3-(pentafluoro-λ⁶-sulfanyl)benzyl)benzene-1,3-diamine. A suspension of 2,3-difluoro-6-nitroaniline (0.500 g, 2.78 mmol, 1.00 equiv) in dry DMSO (5 mL) was treated with 3-(pentafluorosulfanyl)benzylamine (0.714 g, 3.06 mmol, 1.1 equiv) followed by Et₃N (0.43 mL, 3.06 mmol, 1.1 equiv) and I₂ (cat. 5 mg). The reaction mixture was heated to 120 °C for 24 h, cooled to room temperature, diluted with water (30 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), filtered, and
concentrated under reduced pressure. To resulting residue was treated with a small amount of Et$_2$O (2 mL), sonicated, and filtered, and the filter cake was again washed with Et$_2$O (3 x 3 mL) to afford a yellow solid (0.51 g). The filtrate was concentrated in vacuo and the residue was purified by chromatography on SiO$_2$ (acetone/hexanes, 1:10 to 1:4 to 1:3) to afford additional product (0.17 g). The fractions were combined to yield 2-fluoro-4-nitro-N^1-(3-(pentafluoro-λ^6-sulfanyl)benzyl)benzene-1,3-diamine (0.68 g, 63%) as a yellow solid: Mp 169.5-170.0 °C; IR (neat) 3494.7, 3384.8, 1630.9, 1548.9, 1481.8, 1412.8, 1286.1, 1273.0, 1239.5, 1205.9, 1176.1, 1140.7, 1105.3, 1086.6, 890.9, 859.2, 820.1, 795.9, 775.4, 751.1, 687.8 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.85 (dd, 1 H, $J = 9.6$, 1.6 Hz), 7.72-7.68 (m, 2 H), 7.50-7.46 (m, 2 H), 6.07 (br s, 2 H), 6.02 (dd, 1 H, $J = 9.6$, 8.0 Hz), 4.50 (br s, 1 H), 4.54 (d, 2 H, $J = 1.5$ Hz); 13C NMR (100 MHz, acetone-d$_6$) δ 153.9 (t, $J = 16.1$ Hz), 141.3 (d, $J = 9.4$ Hz), 141.3, 137.6 (d, $J = 228.7$ Hz), 135.8 (d, $J = 13.3$ Hz), 135.7, 130.8, 129.5, 124.6 (t, $J = 4.7$ Hz), 124.4 (t, $J = 4.7$ Hz), 122.9 (d, $J = 2.8$ Hz), 100.7 (d, $J = 3.0$ Hz), 45.4; 19F NMR (376 MHz, CDCl$_3$) δ 84.0 (quint, $J = 150.4$ Hz, 1 F), 62.7 (d, $J = 150.4$ Hz, 4 F), -160.4 (s, 1 F); HRMS (HESI) m/z calcd for C$_{13}$H$_{12}$N$_3$O$_2$F$_2$S [M+H]$^+$ 388.0549, found 388.0549.

3-Fluoro-N^4-(3-(pentafluoro-λ^6-sulfanyl)benzyl)benzene-1,2,4-triamine. A stirred solution of 2-fluoro-4-nitro-N^1-(3-(pentafluoro-λ^6-sulfanyl)benzyl)benzene-1,3-diamine (0.500 g, 1.29 mmol) in MeOH (4 mL) was treated with zinc powder (0.422 g, 6.45 mmol) followed by dropwise addition of a solution of saturated ammonium chloride (1.22 mL). The reaction mixture was stirred vigorously at room temperature overnight, and filtered through Celite. The Celite was
washed with EtOAc and the filtrate was extracted with EtOAc (3 x 5 mL). The combined organic layers were dried (Na$_2$SO$_4$), and concentrated under reduced pressure to afford 3-fluoro-N^4-(3-(pentafluoro-λ^6-sulfanyl)benzyl)benzene-1,2,4-triamine (0.390 g, 85%) as a red solid that was used in the next step without further purification: 1H NMR (400 MHz, CDCl$_3$) δ 7.74 (s, 1 H), 7.64 (d, J = 8.4 Hz, 1 H), 7.51 (d, J = 7.6 Hz, 1 H), 7.41 (t, J = 8.0 Hz, 1 H), 6.39 (d, J = 7.6 Hz, 1 H), 5.98 (t, J = 8.4 Hz, 1 H), 4.35 (s, 2 H), 3.32 (br, 5 H).

Ethyl (2-amino-3-fluoro-4-((3-(pentafluoro-λ^6-sulfanyl)benzyl)amino)phenyl)carbamate (RL673_02). An oven-dried 5-mL round bottomed flask equipped with a magnetic stir bar was charged under argon at 0 °C with 3-fluoro-N^4-(3-(pentafluoro-λ^6-sulfanyl)benzyl)benzene-1,2,4-triamine (0.20 g, 0.56 mmol), CH$_2$Cl$_2$ (3 mL) and DIPEA (0.12 mL, 0.7 mmol). Ethyl chloroformate (0.055 mL, 0.56 mmol) was added dropwise via syringe at 0 °C. The reaction mixture was stirred for 1 h at 0 °C, then 3 h at room temperature, quenched with water and extracted with CH$_2$Cl$_2$ (3 x 5 mL). The combined organic extracts were dried (Na$_2$SO$_4$), concentrated under reduced pressure, and purified by chromatography on SiO$_2$ (EtOAc/hexanes, 5:1 to 4:1 to 3:1) to afford the product as a yellow solid. Recrystallization from CH$_2$Cl$_2$/hexanes afford RL673_02 (0.123 g, 44%) as a colorless solid: Mp 141.3-142.1 °C; IR (ATR) 3420.2, 3375.41, 2985.9, 1688.7, 1636.5, 1524.6, 1483.6, 1287.9, 1254.4, 1241.3, 829.4, 816.4, 786.5, 688.7 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.73 (s, 1 H), 7.65 (d, 1 H, J = 8.0 Hz), 7.50 (d, 1 H, J = 7.6 Hz), 7.42 (t, 1 H, J = 8.0 Hz), 6.74 (d, 1 H, J = 7.6 Hz), 6.24 (br s, 1 H), 6.00 (t, 1 H, J = 8.8 Hz), 4.40 (s, 2 H), 4.19 (q, 2 H, J = 7.2 Hz), 3.98 (br s, 3 H), 1.28 (t, 3 H, J = 7.2 Hz); 13C
NMR (100 MHz, CDCl₃) δ 155.5, 154.4 (quint, J = 16.9 Hz), 141.3 (d, J = 233.6 Hz), 140.7, 134.7 (d, J = 9.8 Hz), 130.9, 130.3, 129.2, 125.0 (t, J = 4.6 Hz), 124.8 (t, J = 4.6 Hz), 121.7, 115.6, 101.9, 61.7, 47.6, 14.6; ¹⁹F NMR (565 MHz, CDCl₃) δ 84.5 (quint, J = 146.9 Hz, 1 F), 62.8 (d, J = 146.9 Hz, 4 F), -155.8 (s, 1 F); HRMS (HESI) m/z calcd for C₁₆H₁₈N₃O₂F₆S [M+H]^+ 430.1018, found 430.1015.

Detailed values for main figures

Figure 3C. Retigabine: control (-29.5 ± 0.9; n=11), 100 nM (-30.43 ± 1.2; n=4), 1 µM (-39.35 ± 1.2; n=4) and 10 µM (-53.47 ± 0.9; n=4) and **SF0034:** control (-32.65 ± 0.9; n=21), 100 nM (-39.67 ± 0.9; n=4), 1 µM (-56.62 ± 0.5; n=5) and 10 µM (-73.21 ± 2.8; n=5).

Figure 3D. Retigabine: EC₅₀ 3.3± 0.8 µM, ΔV₁/₂ max = 41 mV, slope = 0.93, n= 4-11; **SF0034:** EC₅₀ 0.60 ± 0.06 µM, ΔV₁/₂ max = 50 mV, slope = 0.92, n= 5-21.

Figure 4A₃. NR561_40: Control (-32.82 ± 1.1; n=8), 100 nM (-38.71 ± 0.6; n=4), 1 µM (-60.45 ± 1.5; n=4) and 10 µM (-75.21 ± 1.7; n=4).

Figure 4B₃. NR561_50: Control (-27.75 ± 1.5; n=9), 100 nM (-34.91 ± 1.9; n=5), 1 µM (-48.56 ± 2.3; n=5) and 10 µM (-69.71 ± 1.7; n=4).

Figure 4C₃. NR579_04: Control (-29.35 ± 2.4; n=9), 100 nM (-31.25 ± 2.3; n=4), 1 µM (-31.77 ± 2.1; n=4) and 10 µM (-35.65 ± 2.1; n=4).

Figure 4D₃. NR561_62: Control (-27.99 ± 1.2; n=9), 100 nM (-33.52 ± 2.3; n=5), 1 µM (-43.15 ± 2.3; n=5) and 10 µM (-66.84 ± 2.4; n=4).

Figure 4A₄. NR561_40: EC₅₀ 0.91 ± 0.08 µM, ΔV₁/₂ max = 51 mV, slope = 0.83, n= 4-8.
Figure 4B. **NR561_50**: EC$_{50}$ 0.74 ± 0.07 µM, ΔV$_{1/2\,\text{max}}$ = 40 mV, slope = 1.1, n= 4-9.

Figure 4C. **NR579_04**: EC$_{50}$ NA, ΔV$_{1/2\,\text{max}}$ = NA, slope = NA, n= 4-9.

Figure 4D. **NR561_62**: EC$_{50}$ 1.48 ± 0.18 µM, ΔV$_{1/2\,\text{max}}$ = 35 mV, slope = 1.2, n= 4-9.

Figure 5. Retigabine: EC$_{50}$ 3.3 ± 0.8 µM; max ΔV$_{1/2}$ 33.88 ± 1.46 (n= 4-11), SF0034: EC$_{50}$ 0.60 ± 0.06 µM; max ΔV$_{1/2}$ 50.04 ± 1.56 (n= 5-21), **NR561_40**: EC$_{50}$ 0.91 ± 0.08 µM; max ΔV$_{1/2}$ 50.90 ± 3.1 (n= 4-8), **NR561_50**: EC$_{50}$ 0.74 ± 0.07 µM; max ΔV$_{1/2}$ 39.6 ± 1.7 (n= 4-9), **NR561_29**: EC$_{50}$ 0.76 ± 0.17 µM; max ΔV$_{1/2}$ 27.81 ± 1.72 (n= 4-10), **NR561_45**: EC$_{50}$ 1.34 ± 0.17 µM; max ΔV$_{1/2}$ 34.1 ± 3.05 (n= 4-9), **NR579_38**: EC$_{50}$ 2.55 ± 0.46 µM; max ΔV$_{1/2}$ 13.74 ± 3.9 (n= 4-5), **NR579_46**: EC$_{50}$ 3.53 ± 0.84 µM; max ΔV$_{1/2}$ 46.67 ± 2.67 (n= 4-8), **NR561_87**: EC$_{50}$ 4.03 ± 1.21 µM; max ΔV$_{1/2}$ 32.78 ± 5.0 (n= 4-7), **NR579_04**: EC$_{50}$ NA; max ΔV$_{1/2}$ NA (n= 4-9), **NR561_62**: EC$_{50}$ 1.48 ± 0.18 µM; max ΔV$_{1/2}$ 34.74 ± 0.74 (n= 4-9), **NR579_45**: EC$_{50}$ 4.49 ± 1.05 µM; max ΔV$_{1/2}$ 26.91 ± 0.99 (n= 4-5) and **NR579_36**: EC$_{50}$ NA; max ΔV$_{1/2}$ NA (n= 4-5).

Figure 6A. **NR561_50**: Control (-39.07 ± 1.23; n=5), 100 nM (-38.65 ± 0.85; n=5) and 1 µM (-42.35 ± 1.2; n=4).

Figure 6B. **NR561_50**: Control (-48.8 ± 2.96; n=4), 100 nM (-53.52 ± 3.5; n=4) and 1 µM (-59.16 ± 5.0; n=4).

Figure 6C. **NR561_40**: Control (-39.38 ± 3.1; n=6), 100 nM (-42.22 ± 2.0; n=6) and 1 µM (-52.04 ± 1.5; n=6).
Figure 6D. **NR561_40**: Control (-45.80 ± 2.0; n=4), 100 nM (-66.8 ± 3.1; n=4) and 1 µM (-79.15 ± 2.5; n=4).

Figure 6E. **NR561_29**: Control (-45.99 ± 1.4; n=4), 100 nM (-48.50 ± 1.52; n=4) and 1 µM (-64.5 ± 1.2; n=4).

Figure 6F. **NR561_29**: Control (-53.37 ± 1.8; n=4), 100 nM (-60.5 ± 2.5; n=4) and 1 µM (-65.2 ± 0.92; n=4).

Figure 8A. **Control**: (-32.67 ± 1.3; n=5), 100 nM (-50.31 ± 1.44; n=5), 1 µM (-73.9 ± 2.3; n=5) and 10 µM (-90.31 ± 1.29; n=5).

Figure 8A. **RL648_81**: EC50 0.19 ± 0.02 µM, ΔV1/2 max = 52 mV, slope = 0.74, n= 5; **SF0034**: EC50 0.60 ± 0.06 µM, ΔV1/2 max = 50 mV, slope = 0.92, n= 5-21.

Figure 8B. **RL648_81**: Control (-50.43 ± 2.69; n=7), 100 nM (-54.43 ± 2.7; n=7), 1 µM (-55.4 ± 2.5; n=4) and 10 µM (-58.1 ± 2.6; n=4)

Figure 8C. **RL648_81**: Control (-53.95 ± 4.5; n=5), 100 nM (-56.92 ± 3.8; n=5), 1 µM (-64.4 ± 3.5; n=5) and 10 µM (-63.4 ± 1.8; n=4).

Figure 8D. **SF0034**: EC50 0.60 ± 0.06 µM; max ΔV1/2 50.04 ± 1.56 (n= 5-21), **RL648_81**: EC50 0.19 ± 0.02 µM; max ΔV1/2 51.12 ± 3.5 (n= 5), **RL648_73**: EC50 0.30 ± 0.05 µM; max ΔV1/2 47.0 ± 3.9 (n= 4-6), **RL648_86**: EC50 0.34 ± 0.07 µM; max ΔV1/2 49.9 ± 2.5 (n= 4-5), **NR573_02**: EC50 0.88 ± 0.28 µM; max ΔV1/2 42.5 ± 4.5 (n= 4-11).

Figure 8E. **RL648_73**: control (-44.52 ± 2.0; n=4), 100 nM (-43.53 ± 1.1; n=4), 1µM (-48.8 ± 3.0; n=4) and 10 µM (-49.8 ± 1.7; n=3), **RL648_86**: control (-44.51 ± 4.0; n=5), 100 nM (-45.93 ± 4.1; n=4), 1µM (-52.4 ± 3.9; n=4) and 10 µM (-49.7 ± 2.4; n=4) and **RL673_02**: control (-
42.5 ± 2.9; n=4), 100 nM (-41.7 ± 3.0; n=4) and 1 µM (-42.8 ± 2.4; n=4) and 10 µM (-55.7 ± 2.5; n=4).

Figure 8F. RL648_73: control (-53.92 ± 4.1; n=4), 100 nM (-59.5 ± 2.5; n=4), 1 µM (-61.4 ± 2.6; n=4) and 10 µM (-60.4 ± 2.3; n=4), **RL648_86:** control (-54.84 ± 1.5; n=4), 100 nM (-55.14 ± 1.4; n=4), 1 µM (-58.4 ± 2.5; n=4) and 10 µM (-60.2 ± 2.9; n=3) and **RL673_02:** control (-64.35 ± 3.8; n=4), 100 nM (-67.5 ± 5.5; n=4), 1 µM (-74.4 ± 4.5; n=4) and 10 µM (-75.2 ± 1.8; n=4)

Figure 9A. RL648_81: Control (-40.5 ± 2; n=5), 100 nM (-47.7 ± 1.3; n=4), 1 µM (-61.57 ± 1.4; n=4) and 10 µM (-64.9 ± 1.3; n=4).

Figure 9B. RL648_81: Control (-43.5 ± 0.8; n=4), 100 nM (-43.1 ± 2.5; n=4), 1 µM (-42.75 ± 2.7; n=4) and 10 µM (-41.1 ± 2; n=4).