Quantitative Single-Cell Analysis of Signaling Pathways Activated Immediately Downstream of Histamine Receptor Subtypes

Jakobus van Unen, Ali Rashidfarrokhi,¹ Eelco Hoogendoorn, Marten Postma, Theodorus W. J. Gadella, Jr., and Joachim Goedhart

Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, The Netherlands

Received March 31, 2016; accepted June 28, 2016

ABSTRACT

Genetically encoded biosensors based on Förster resonance energy transfer (FRET) can visualize responses of individual cells in real time. Here, we evaluate whether FRET-based biosensors provide sufficient contrast and specificity to measure activity of G-protein–coupled receptors. The four histamine receptor subtypes (H₁R, H₂R, H₃R, and H₄R) respond to the ligand histamine by activating three canonical heterotrimeric G-protein–mediated signaling pathways with a reported high degree of specificity. Using FRET-based biosensors, we demonstrate that H₁R activates Gαᵢ. We also observed that H₁R activates Gαᵢ, albeit at a 10-fold lower potency. In addition to increasing cAMP levels, most likely via Gαₛ, we found that the H₂R induces Gαᵣ-mediated calcium release. The H₃R and H₄R activated Gαᵢ with high specificity and a high potency. We demonstrate that a number of FRET sensors provide sufficient contrast to: 1) analyze the specificity of the histamine receptor subtypes for different heterotrimeric G-protein families with single-cell resolution, 2) probe for antagonist specificity, and 3) allow the measurement of single-cell concentration-response curves.

Introduction

The histamine receptor family consists of four known members to date: histamine-1-receptor (H₁R), histamine-2-receptor (H₂R), histamine-3-receptor (H₃R), and the more recently discovered histamine-4-receptor (H₄R) (Jablonski et al., 2004). Although the sequence homology is relatively low (e.g., H₂R shares approximately 37% identity with the H₃R, but less than 20% with the H₁R and H₂R; Liu et al., 2001; Zhu et al., 2001), all subtypes bind histamine specifically. The histamine receptor family has been implicated in a large number of pathologies (Parsons and Ganellin, 2006; Pino-Ángeles et al., 2012), including cancer (Medina and Rivera, 2010), and is therefore a popular target for therapeutic interventions (Bongers et al., 2010; Seifert et al., 2013).

The H₁R is mainly expressed in endothelium, smooth muscle cells, and the central nervous system (CNS) and is best known for its role in various allergic disorders, such as hay fever, urticaria, and allergic rhinitis. The H₂R is ubiquitously expressed and its antagonists are widely used for the treatment of gastric ulcers. The H₃R is predominantly expressed in the CNS, and its antagonists are currently under investigation for the treatment of a wide range of CNS pathologies, including cognitive disorders, sleep disorders, and aberrant energy homeostasis. The H₄R is expressed in leukocytes and mast cells, and is thus possibly involved in inflammatory and immune responses (Thurmond et al., 2008).

Histamine receptors are G-protein–coupled receptors (GPCRs), and the different subtypes couple to distinct heterotrimeric G-protein families. Signaling downstream of the heterotrimeric G-protein complex is often attributed and classified according to the Gα subunit, since it defines the specific downstream signaling events that are activated. GPCRs can signal via four different Gα-protein families: Gαᵢ, Gα₁₂, Gα₁₃, and Gαᵦ (Fig. 1A). Furthermore, the accompanying Gβγ subunit also contributes to relaying the signal (Smrcka, 2008). In addition, signals are transduced via noncanonical pathways that involve β-arrestins (Ostermaier et al., 2014). The signaling events directly downstream of the GPCR are used in cell-based screens aimed at identifying drugs that target GPCRs. Classically, Ca²⁺ and cAMP have been the second messengers of choice to detect GPCR activation.

Recently, new cell-based screens that measure alternative parameters and enable high-throughput analysis have been reported (Schröder et al., 2010; Inoue et al., 2012; Kroese et al., 2015). The detection of Ca²⁺ is performed with Ca²⁺-sensitive fluorescent probes, enabling real-time analysis. Since Gαᵢ-mediated signaling efficiently activates Ca²⁺ release via...
phospholipase C-β (PLCβ), quantification of calcium levels is an important method to screen GPCR activity. To convert the activity of GPCRs that do not increase calcium levels, promiscuous G-proteins can be used (e.g., Ga16) (Thomsen et al., 2005). Although calcium is a very sensitive readout due to magnification of the signal, Ca²⁺ is multiple steps downstream from the G-protein and influenced by cross-talk and signal amplification.

The cAMP levels are used to detect Ga₃ and Ga₆i signaling. However, the detection of Ga₃i activity often requires artificial elevation of cAMP levels by forskolin (Sensken et al., 2008). The detection of cAMP in general and Ga₃i activity in particular has limited temporal resolution. All of the high-content screening methods use population averages, and thus information on cell-to-cell heterogeneity is usually lost. Moreover, since single-cell resolution is not achieved, the strategies for detection of GPCR activation cannot report on spatial information of signaling events. The only exception is detection of Ca²⁺ with calcium-sensitive fluorophores.

Resonance energy transfer techniques have several unique properties that possibly allow new insights into GPCR signaling and their pharmacology, both in vitro and in vivo (Lohse et al., 2012; Clister et al., 2015; van Unen et al., 2015b). These techniques can provide quantitative data, on/off kinetics with high temporal resolution, can be measured in real time, and allow fast and straightforward analysis of the data (Marullo and Bouvier, 2007; Lohse et al., 2008). Specifically, genetically encoded Förster resonance energy transfer (FRET) sensors allow the assessment of cell-to-cell heterogeneity and the acquisition of multiple responses.
from the same single cell in real time (Lohse et al., 2012). FRET reporters can be developed to measure every step in the GPCR signaling cascade. FRET biosensors are available to measure ligand binding to the GPCR (Stoddart et al., 2015), GPCR activation (Vilardaga et al., 2003), GPCR and G-protein interaction (Hein et al., 2005; Stumpf and Hoffmann, 2016), G-protein activation (Janetopoulos et al., 2001; Adjobo-Hermans et al., 2011), Ca\(^{2+}\) release (Nagai et al., 2004), cAMP production (Klarenbeek et al., 2015), and activation of downstream effectors such as protein kinase C (Verbeek et al., 2008), RhoA (van Unen et al., 2015a), and inositol 1,4,5-trisphosphate (Gulyás et al., 2015). The preferred option is to use FRET biosensors that report on the specific activation of one of the heterotrimeric G-protein subfamilies directly stimulated by a GPCR. Since this kind of biosensor is not yet available for all subclasses of G-proteins, we also made use of FRET biosensors that report on G-protein–mediated second-messenger production or activation. With the use of these biosensors, we characterized the canonical G-protein–mediated signaling profiles of the four histamine receptor subtypes. Moreover, we show that these techniques can be used to characterize ligand specificity and calculate potency at these receptors.

Materials and Methods

Construction of Fluorescent Protein Fusions.

To obtain N1-xp2A-mCherry, two oligonucleotides encoding for the p2A viral peptide sequence ATNFSLLKQAEDVEENPGP (Kim et al., 2011) were annealed as previously described (Goedhart and Gadella, 2005). Annealing forward 5′-CCGGtggctactaactctcgactgtgagactgtggagcgtgaggagaaacctgctggctggc-3′ and reverse 5′-CATGagacgaggccggtttctttcctcagctgttcgctgagtcctgagcgtgaggagaaacctgctggctggc-3′ oligonucleotides yielded the viral peptide xp2A sequence with overhangs (in capitals) on both sides, compatible with AgeI and NcoI restriction sites. The double-stranded linker was ligated into an RSET-mCherry plasmid cut with AgeI and NcoI, resulting in RSET-xp2A-mCherry. This RSET-xp2A-mCherry plasmid was cut with AgeI and BsgI and ligated into an empty clontech-style N1 vector, resulting in N1-xp2A-mCherry.

It turned out that this xp2A sequence was too short for efficient separation by the viral peptide sequence. To this end, three additional amino acids, GSG, were added to yield GSGATNFSLLKQAEDVEENPGP. To add the GSG sequence, a PCR was performed on N1-xp2A-mCherry with forward primer 5′-TCCACCGGTTGAGTGGCTTCATTTACTACCTCAGCCTGC-3′ and reverse primer 5′-CTCTAAATGTTTGATGGC-3′. The resulting PCR product was ligated into an empty clontech-style N1 vector using AgeI and BsgI to create N1-p2A-mCherry.

Human histamine receptors were tagged with fluorescent proteins as described later. N1-H1R-mCherry was obtained by cutting N1-mCherry with NheI and AgeI and ligation with N1-H1R-mTurquoise cut with the same enzymes. N1-H1R-p2A-mCherry was made by cutting N1-p2A-mCherry with AgeI and NotI and ligation with N1-H1R-mCherry cut with the same enzymes. pcDNA3.1-H2R (cDNA.org) was amplified using forward primer 5′-AGGTCTATATAAGCAGAGC-3′ and reverse primer 5′-AACCGCGGCCTGTCTGTGGCTCCCTG-3′. The PCR product was cut with HindIII and SacI and ligated into an N1-mCherry vector that was cut with the same enzymes. N1-H2R-p2A-mCherry was made by cutting N1-p2A-mCherry with SacI and BsgI and ligated with N1-H2R-mCherry cut with the same enzymes.

Fig. 2. Tagging histamine receptors with fluorescent proteins. (A) Representative confocal images of the localization of the four histamine receptor subtypes. HeLa cells were transiently transfected with a plasmid containing the indicated histamine receptor subtype directly fused to mCherry. (B) Schematic overview of the p2A tagging strategy. To prevent possible FRET between the CFP of a plasma membrane–localized biosensor and the RFP fused to the receptor (left), we introduced a p2A sequence between the receptor and the RFP, leading to separate expression of the RFP and receptor proteins. (C) Confocal image of HeLa cells transfected with the histamine-4-receptor fused to p2A-mCherry, showing the clear cytoplasmic localization of mCherry. Width of the individual images in (A) corresponds to 105 \(\mu\)m, and the width of the image in (C) corresponds to 117 \(\mu\)m.
Fig. 3. Gaq signaling by histamine receptors. (A) Activation of the heterotrimeric G-protein Gaq by the four histamine receptor subtypes as measured by FRET ratio imaging. (B) HeLa cells transfected with H1R-p2A-RFP and the Gaq biosensor were treated with histamine and mepyramine (black). Control cells were transfected with only the Gaq biosensor (gray). (C) Cells transfected with H2R-p2A-RFP and the Gaq biosensor were treated with histamine and ranitidine (black). In the control condition, cells were transfected only with the Gaq biosensor (gray). (D) Cells transfected with H3R-p2A-RFP and the Gaq biosensor were treated with histamine and thioperamide (black). In the control condition, cells were transfected with only the Gaq biosensor (gray). (E) Cells transfected with H4R-p2A-RFP and the Gaq biosensor were treated with histamine and thioperamide (black). In the control condition, cells were only transfected with the Gaq biosensor (gray). In the control condition, cells were transfected with only the Gaq biosensor (gray). In the control condition, cells were only transfected with the Gaq biosensor (gray).

The median and average (+) amplitude of the FRET ratio change at t = 100 seconds (F) and the raw YFP/CFP ratio at t = 0 seconds (G) per receptor subtype, quantified from the experiments shown in (B–E). Box limits indicate the 25th and 75th percentiles as determined by R software (http://www.r-project.org); whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. HeLa cells were stimulated with histamine at t = 32 seconds, and the response was antagonized by the addition of the appropriate antagonist at t = 152 seconds. Time traces show the average ratio change of YFP/CFP fluorescence (± S.E.M.). AC, adenylyl cyclase; DAG, diacylglycerol; mDia, mammalian diaphanous-related formin 1; PKA, protein kinase A; PKC, protein kinase C; ROCK, XXX.
pcDNA3.1-H1R (cDNA.org) was amplified using forward primer 5'-AGGCTCTATATAAGCGACGAC-3' and reverse primer 5'-ATACCCGGTCCCCTGACGAGCTCCAGC-3'. The PCR product was cut with HindIII and Age1 and ligated into an N1-mCherry vector that was cut with the same enzymes. N1-H1R-p2A-mCherry was made by cutting N1-p2A-mCherry with Age1 and BsrG1 and ligation with N1-H1R-mCherry cut with the same enzymes.

pDEF-H2R-mVenus (a kind gift from Henry Vicher, Vrije University, Amsterdam, The Netherlands) was amplified with reverse primer ATACCGTTGAGAAGATACTGACCGACTG and forward primer CAGGTGCTGAGGAGAATTAG, and the product was cut with Age1 and Acc561, resulting in N1-H2R-mTurquoise2. mTurquoise2 was swapped for mCherry and p2A-mCherry by cutting N1-mCherry and N1-p2A-mCherry with Age1 and Not1 and ligation with N1-H2R-mTurquoise2 cut with the same enzymes, resulting in N1-H2R-mCherry and N1-H2R-p2A-mCherry. The histamine receptors are available from Addgene.org.

A plasmid encoding YC3m6.3 (Ycam, Middlesex, UK) was described previously (van Unen et al., 2015a).

Results

Overview of Histamine Receptor Signaling Pathways and Relevant FRET Sensors. To study the activation of processes immediately downstream of the four histamine receptor subtypes, we used several FRET biosensors (Fig. 1B). Since the H1R, H2R, and H3RH4R activate well described, presumably specific classes of G-proteins, we used FRET biosensors that report on these pathways.

The H2R is well known to couple to Gq; therefore, we used an intermolecular FRET biosensor that directly measures the activation (e.g., GDP for GTP exchange) of the heterotrimeric G-protein Gq by monitoring the separation of the Ga subunit and the Gq subunit (Adjobo-Hermans et al., 2011). Furthermore, we used Ycam (Ycam), a unimolecular FRET sensor based on the Ca2+-binding domains of calmodulin (Nagai et al., 2004), which measures changes in intracellular Ca2+ concentration upon Gq-mediated activation of the PLCβ family. More recently, Gq has been linked to the activation of RhoA via direct interaction with Rho guanine exchange factors (Lutz et al., 2007). To measure the activation of RhoA, we used the DORA RhoA biosensor. This unimolecular FRET sensor measures the GTP loading of RhoA via binding of the Rho-binding domain of PKN1 to the RhoA moiety on the sensor (van Unen et al., 2015a). It should be noted that this sensor might also report on the activity of Gα12/13. The H1R is best known to couple to the Gαs subfamily of G-proteins, which are known to stimulate the production of cAMP. There is a FRET biosensor available for the direct measurement of Gαs activation (Hein et al., 2006); however, we found that the Gαs-CFP fusion was mostly cytoplasmic, and therefore did not meet our criteria for using it in a FRET biosensor for Gαs activation. We therefore decided to use TEPA CVV, a unimolecular FRET sensor based on the cAMP-binding domains of the protein Epac1, which can measure Gαs-mediated activation in cAMP levels inside cells (Klarenbeek et al., 2011), to measure H2R activation. The H3R and H4R are predominantly linked to the activation of Gαi, which is classically assayed by probing the inhibition of forskolin-stimulated cAMP production in cells (Sensken et al., 2008). To provide a more direct way to measure Gαi, we used a recently developed intramolecular FRET biosensor that directly reports on the activation of Gαi by monitoring the separation of the Gα subunit and the Gβ subunit (van Unen et al., 2016).

Image Analysis. ImageJ (National Institutes of Health, Bethesda, MD) was used to analyze the raw microscopy images. A custom script in Python (Python.org) was used to perform background subtractions, bleedthrough correction, and calculation of the normalized ratio per time point for individual cells. The output of Python was written to Excel (Microsoft, Redmond, WA). Graphs and statistics were conducted using GraphPad version 6.0 for Mac (GraphPad Software, La Jolla, CA; www.graphpad.com). The fit of the concentration-response curves was performed in GraphPad with the following equation:

\[\text{ratio} = \frac{\text{min} + \text{max} \cdot ((-\text{EC}_{50} - X^{+n}))}{1 + 10^{(n-)}}, \]

where min and max represent the experimentally obtained minimal and maximal ratio, respectively; X is the log of the histamine concentration; n represents the Hill coefficient; and \(\text{EC}_{50} \) is the -log of the concentration (EC50) at which 50% of the maximal effect is observed.

Widefield Microscopy. Ratiometric FRET measurements were performed using a previously described widefield fluorescence microscope (van Unen et al., 2015a). Typical exposure times ranged from 50–200 ms, and camera binning was set to 4 x 4. The 420-nm (slit width 30 nm) excitation light was reflected onto the sample by a 455DCLP dichroic mirror (Omega, Brattleboro, VT), and cyan fluorescent protein (CFP) emission was detected with a BP470/30 filter (Omega), and yellow fluorescent protein (YFP) emission was detected with a BP535/30 filter by rotating the filter wheel. Acquisitions were corrected for background signal and, for FRET ratio imaging, bleedthrough correction, and calculation of the normalized ratio per time point for individual cells. The output of Python was corrected for background signal.

Cell Culture and Sample Preparation. Cell culture, transfection, and live cell microscopy conditions were performed as previously described (van Unen et al., 2015a).

Confocal Microscopy. HeLa cells transfected with the indicated constructs were imaged using a Nikon A1 confocal microscope equipped with a 60× oil immersion objective (Plan Apochromat VC, NA 1.4; Nikon Instruments, Melville, NY). The pinhole size was set to 1 Airy unit (<0.8 μm). Samples were excited with a 561-nm laser line and reflected onto the sample by a 457/514/561 dichroic mirror. Red fluorescent protein (RFP) emission was filtered through a BP595/50 emission filter. Acquisitions were corrected for background signal.
Fig. 4. RhoA signaling by histamine receptors. (A) Activation of the DORA RhoA biosensor by the four histamine receptor subtypes, measured by FRET ratio imaging. (B) Hela cells transfected with H1R-p2A-RFP and the DORA RhoA biosensor were treated with histamine and mepyramine (black). Control cells were transfected with only the DORA RhoA biosensor (gray). In the control condition, cells were transfected with only the DORA RhoA biosensor (gray). (C) Cells transfected with H2R-p2A-RFP and the DORA RhoA biosensor were treated with histamine and ranitidine (black). In the control condition, cells were transfected with only the DORA RhoA biosensor (gray). (D) Cells transfected with H3R-p2A-RFP and the DORA RhoA biosensor were treated with histamine and thioperamide (black). In the control condition, cells were transfected with only the DORA RhoA biosensor (gray). (E) Cells transfected with H4R-p2A-RFP and the DORA RhoA biosensor were treated with histamine and thioperamide (black). In the control condition, cells were transfected with only the DORA RhoA biosensor (gray). The median and average (+) amplitude of the FRET ratio change at t = 100 seconds (F) and the raw YFP/CFP ratio at t = 0 seconds (G) per receptor subtype, quantified from the experiments shown in (B–E). Box limits indicate the
We used these FRET biosensors to measure the signaling responses upon stimulation of the four histamine receptor subtypes to create heterotrimeric G-protein signaling profiles per receptor.

Tagging of Histamine Receptors with a Fluorescent Protein. The four human histamine receptor subtype fusions were transfected with the RFP variant mCherry on their C-terminal end and imaged using confocal microscopy to examine their localization in living cells. The H1R, H2R, H3R, or H4R was predominantly localized to the plasma membrane (Fig. 2A). Since some of the FRET biosensors used in this study are also localized to the plasma membrane, we anticipated that FRET could occur between fluorescent proteins present in the FRET biosensors and the RFP fused to the C-terminal of the receptor (Fig. 2B, left). To prevent bystander FRET, we used a strategy where the RFP is separated from the receptor protein during translation, and is thus no longer localized to the plasma membrane (Fig. 2B, right). With this strategy, the receptor is essentially untagged, and the RFP can still be used as a reporter for receptor translation. We cloned a previously described p2A sequence (Kim et al., 2011) in between the coding sequences for the receptors and the RFP, resulting in plasmids containing HxR-p2A-RFP (for details, see Materials and Methods). As a result, HeLa cells transfected with these constructs showed cytosolic localization of RFP fluorescence, as shown for H3R-p2A-RFP (Fig. 2C) and the other three histamine receptor subtypes (Supplemental Fig. 1).

Analysis of Goq Signaling by Four Histamine Receptor Subtypes. To study which of the histamine receptor subtypes is capable of activating the heterotrimeric G-protein Goq, we performed live cell measurements on HeLa cells transfected with the Goq biosensor (Fig. 3A) and cotransfected with H1R-p2A-RFP, H2R-p2A-RFP, H3R-p2A-RFP, or H4R-p2A-RFP. YFP and CFP fluorescence was monitored over time, and cells were stimulated with the indicated amount of agonist and antagonist. Activation of the H1R was achieved by stimulating the cells at the indicated time points with histamine, and the response was antagonized by the addition of the H2R-specific antagonist mepyramine (Leurs et al., 1995). A fast drop in YFP/CFP FRET ratio (10–30%) was observed after addition of histamine, indicating a fast activation of the receptor and subsequent separation of Goq subunit and Gβγ dimer. The signal quickly returned to baseline after addition of mepyramine (Fig. 3B, black trace). No change in YFP/CFP FRET ratio was observed in cells transfected with H2R, H3R, or H4R after stimulation with histamine and subsequent addition of the H2R-specific antagonist ranitidine (Leurs et al., 1995) or the H2R/H3R-specific antagonist thioperamide (Leurs et al., 1995), indicating no activation or deactivation of Goq by H2R, H3R, or H4R (Fig. 3, C–E, black traces). Cells in control conditions (no GPCR coexpression) were transfected with the Goq biosensor and did not show any change in FRET ratio upon addition of the relevant agonists and antagonists (Fig. 3, B–E, gray traces). The amplitude of the FRET ratio change at $t = 100$ seconds, was quantified from single cells per histamine receptor subtype (Fig. 3F). The basal FRET ratio of the biosensors at the start of every experiment ($t = 0$) was used to evaluate basal activity. We did not observe large differences in FRET ratio between the receptor subtypes at the start of the experiment (Fig. 3G).

From these results, we conclude that only the H1R effectively couples to the heterotrimeric G-protein Goq, and this biosensor provides high selectivity and sensitivity to readout H1R activation.

Analysis of RhoA Signaling by Four Histamine Receptor Subtypes. To study the activation of the small GTPase RhoA, we performed live cell measurements on HeLa cells transfected with the DORA RhoA biosensor (Fig. 4A) and cotransfected with H1R-p2A-RFP, H2R-p2A-RFP, H3R-p2A-RFP, or H4R-p2A-RFP. Activation of the H1R resulted in a fast increase in YFP/CFP FRET ratio (30–60%), indicating a fast activation of the receptor and subsequent exchange of GTP for GDP on the RhoA biosensor. The signal rapidly returned to baseline after addition of mepyramine (Fig. 4B, black trace). Activation of the H2R resulted in a small reversible change in YFP/CFP FRET ratio (5%) (Fig. 4C, black trace). Activation of the H3R resulted in a slow, small transient change in YFP/CFP FRET ratio, whereas no change in YFP/CFP FRET ratio was observed after activation of the H4R (Fig. 3, D and E, black traces). Cells in the control condition that were transfected with the DORA RhoA biosensor showed a minor reversible change in FRET ratio (<5%) upon addition of histamine (Fig. 4, B–E, gray traces). We observed this small response previously (van Unen et al., 2015a), and it can most likely be attributed to the activation of the endogenous guanine exchange factor trio (van Rijssel and van Buul, 2012) by endogenous H1R receptors. We repeated this experiment in human embryonic kidney 293 (HEK293) cells, which do not contain endogenous H1R receptors, and found similar results for the activation of RhoA by ectopically expressed H1R, but no change in YFP/CFP FRET ratio for the control condition (Supplemental Fig. 2).

The amplitude of the FRET ratio change at $t = 100$ seconds (Fig. 4F) and the start ratio (Fig. 4G) were quantified from single cells per histamine receptor to allow comparison between the receptor subtypes.

From these results, we conclude that the H1R effectively signals to the small GTPase RhoA. The small effects of the H2R and H3R on the DORA RhoA biosensor that were observed are possibly mediated by a minor activation of endogenous Goq or Go12/Go13 by these receptors.

Analysis of Calcium Signaling by Four Histamine Receptor Subtypes. To investigate changes in intracellular Ca2+ concentration upon stimulation of the four histamine receptor subtypes, we performed live cell measurements on HEK293 cells transfected with the Ycam biosensor (Fig. 5A) and cotransfected with H1R-p2A-RFP, H2R-p2A-RFP, H3R-p2A-RFP, or H4R-p2A-RFP. HEK293 cells were used in this experiment because endogenous H1 receptors in HeLa cells interfere with the measurements of intracellular Ca2+. Carbachol was added at the indicated time points to stimulate...
Fig. 5. Calcium signaling by histamine receptors. (A) Activation of the Ycam calcium biosensor by the four histamine receptor subtypes, measured by FRET ratio. (B) HEK293 cells transfected with H1R-p2A-RFP and the Ycam biosensor were treated with histamine and carbachol (black). Control cells transfected with only the Ycam biosensor were treated with histamine and carbachol (gray). (C) Cells transfected with H2R-p2A-RFP and the Ycam biosensor were treated with histamine and carbachol (black). (D) Cells transfected with H3R-p2A-RFP and the Ycam biosensor were treated with histamine and carbachol (black). (E) Cells transfected with H4R-p2A-RFP and the Ycam were treated with histamine and carbachol (black). The median and average (+) amplitude of the FRET ratio change at t = 100 seconds (F) and the raw YFP/CFP ratio at t = 0 seconds (G) per receptor subtype, quantified from the experiments shown in (B–E). Box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. HEK293 cells were stimulated with histamine at t = 32 seconds and stimulated with carbachol at t = 152 seconds. Time traces show the average ratio change of YFP/CFP fluorescence (± S.E.M.). AC, adenylyl cyclase; DAG, diacylglycerol; mDia, mammalian diaphanous-related formin 1; PKA, protein kinase A; PKC, protein kinase C; ROCK, Rho-associated coiled-coil-containing protein kinase.
endogenous M1/M3 receptors as a positive endpoint control for intracellular Ca2+ release (Zhu et al., 1998). Stimulation of the H1R resulted in a fast transient increase in YFP/CFP FRET ratio (300–400%), which is indicative of a rise in intracellular calcium. The signal decreased and stabilized again at an elevated ratio compared with baseline (Fig. 5B, black trace). Stimulation with carbachol did not further change the YFP/CFP ratio, suggesting depletion of intracellular Ca2+ stores upon histamine stimulation or desensitization of GqGoa signaling. Interestingly, we observed a fast transient increase in YFP/CFP FRET ratio (200–300%) upon stimulation of the H2R (Fig. 5C, black trace). Subsequent stimulation with carbachol resulted in a similar fast transient increase in YFP/CFP FRET ratio (200–300%). This indicates that activation of the H2R causes release of intracellular Ca2+. Preincubation with the specific Gaq inhibitor FR900359 (Schrage et al., 2015) resulted in a complete abrogation of intracellular Ca2+ release downstream of H2R, neither directly or indirectly. Gaq-mediated Ca2+ release is a process that involves multiple steps that amplify the response (Berridge et al., 2000). This may explain why, after H2R activation, the response of the Gaq biosensor remains under the threshold of detection, but still leads to robust calcium release.

Activation of the H3R or H4R did not result in a change of YFP/CFP FRET ratio (Fig. 5, D and E, black traces). In control cells transfected with Ycam, we did not observe a change in YFP/CFP FRET ratio upon stimulation with histamine, but stimulation with carbachol resulted in a transient increase in YFP/CFP FRET ratio (250–350%) (Fig. 5, B–E, gray traces).

The amplitude of the FRET ratio change at t = 100 seconds was quantified from single cells per histamine receptor subtype (Fig. 5F). We did not observe large differences in basal FRET ratio between the receptor subtypes (Fig. 5G).

From this, we conclude that activation of the H2R and, surprisingly, the H3R leads to release of intracellular Ca2+, providing evidence for Gaq coupling at both of these receptors.

Analysis of cAMP Signaling by Four Histamine Receptor Subtypes. To assess the production of cAMP upon stimulation of the four histamine receptor subtypes, we performed live cell measurements on HeLa cells transfected with a previously published Ga1 biosensor (van Unen et al., 2016) and cotransfected with H1R-p2A-RFP, H2R-p2A-RFP, H3R-p2A-RFP, or H4R-p2A-RFP. The Ga1 biosensor remains under the threshold of detection, but still leads to robust calcium release. Interestingly, stimulation of HEK293 cells with only TEPACVV transfection resulted in a transient change of YFP/CFP FRET ratio (10–20%), which was sensitive to ranitidine addition, a strong indication for the endogenous presence of H2R receptors in HEK293 cells (Supplemental Fig. 4A, gray trace). Stimulation of the H1R or H4R did not result in any change in YFP/CFP FRET ratio, indicating no changes in basal cAMP levels (Fig. 6, D and E, black traces). In control cells transfected with TEPACVV, we did not observe a change in YFP/CFP FRET ratio upon stimulation with histamine or any of the antagonists (Fig. 6, B–E, gray traces). The amplitude of the FRET ratio change at t = 100 seconds was quantified from single cells per histamine receptor subtype (Fig. 6F) as well as the FRET ratio at the start of the experiment (Fig. 6G).

From these results, we conclude that the H2R strongly induces cAMP production, whereas the experiments with H1R suggest a minor effect on cAMP production, presumably via coupling to Gqo.

Analysis of Gaq Signaling by Four Histamine Receptor Subtypes. To study the activation of the heterotrimeric G-protein Gaq1, we performed live cell measurements on HeLa cells transfected with a previously published Gaq1 biosensor (van Unen et al., 2016) and cotransfected with H1R-p2A-RFP, H2R-p2A-RFP, H3R-p2A-RFP, or H4R-p2A-RFP. Stimulation of the H1R resulted in fast reversible change in YFP/CFP FRET ratio (10–20%). Overnight preincubation of cells with PTX completely abrogated this response, further strengthening the evidence for activation of Gaq1 by H1R (Supplemental Fig. 5). Stimulation of the H2R did not result in a change in YFP/CFP FRET ratio. Stimulation of the H3R and H4R resulted in a fast, partly reversible change in YFP/CFP FRET ratio (10–20%). Stimulation of control cells transfected with only the Gaq1 biosensor did not result in a change in YFP/CFP FRET ratio (Fig. 7, B–E, gray traces). The amplitude of the FRET ratio change at t = 100 seconds was quantified from single cells per histamine receptor subtype, showing clear activation of the Gaq1 biosensor by subtypes H1R, H2R, H3R, and H4R (Fig. 7F). We did not observe large differences in basal FRET ratio between the receptor subtypes (Fig. 7G).

These results led us to conclude that the H1R, H2R, and H4R can robustly couple to and activate the heterotrimeric G-protein Gaq1.

Single-Cell Analysis of Pharmacological Parameters with FRET-Based Biosensors

Based on the systematic interrogation with FRET biosensors that measure the activation of different G-protein families in this study, we propose a revision of G-protein selectivity at the four histamine receptor subtypes (summarized in Fig. 8A).

Finally, we tested whether FRET-based biosensors can be used to determine important pharmacological parameters, including antagonist specificity and concentration-response curves. To demonstrate the application of a FRET sensor for the rapid testing of multiple antagonists, we transfected HeLa cells with the TEPACVV biosensor and cotransfected with H2R-p2A-RFP. Cells were sequentially stimulated with histamine, mepyramine, thioperamide, and ranitidine at the indicated time points (Fig. 8B). Histamine addition resulted in an expected
Fig. 6. cAMP signaling by histamine receptors. (A) Production of cAMP by the four histamine receptor subtypes visualized by the EPACVY biosensor and measured by FRET ratio. (B) Hela cells transfected with H1R-p2A-RFP and the EPACVY biosensor were treated with histamine and mepyramine (black). Control cells were transfected with only the EPACVY biosensor (gray). (C) Cells transfected with H2R-p2A-RFP and the EPACVY biosensor were treated with histamine and ranitidine (black). Control cells were transfected with only the EPACVY biosensor (gray). (D) Cells transfected with H3R-p2A-RFP and the EPACVY biosensor were treated with histamine and thioperamide (black). In the control condition, cells were transfected with only the EPACVY biosensor (gray). (E) Cells transfected with H4R-p2A-RFP and the EPACVY biosensor were treated with histamine and thioperamide (black). In the control condition, cells were transfected with only the EPACVY biosensor (gray). (F) The median and average (+) amplitude of the FRET ratio change at t = 100 seconds (F) and the raw YFP/CFP ratio at t = 0 seconds (G) per receptor subtype, quantified from the experiments shown in (B–E). Box limits
fast drop in YFP/CFP ratio (40–60%), and only upon addition of ranitidine did the ratio partly return to baseline levels, showing the specific inhibition of the H2R by ranitidine. To explore the possibility of using FRET sensors for single-cell concentration-response curves, we transfected HeLa cells with H1R-p2A-RFP and the Gqα biosensor, the Goα1 biosensor, or the DORA RhoA biosensor. Titration of increasing amounts of histamine resulted in concentration-response curves with pEC50 values of 6.05 [95% confidence interval (CI), 6.21–6.58] for Goq activation (Fig. 8C), 5.07 (95% CI, 5.63–4.50) for RhoA activation (Fig. 8D), and 5.05 (95% CI, 5.78–4.33) for Goα1 activation (Fig. 8E).

Next, we evaluated the effect of a potent synthetic H1R ligand, methylhistaprodifen (Elz et al., 2000), on Goq versus Goα1 activation. The concentration-response curves yielded pEC50 values of 5.71 (95% CI, 7.94–7.48) and 8.09 (95% CI, 8.28–7.91) for the H2R and H3R, respectively (Fig. 8F). When we titrated increasing histamine concentrations in cells transfected with H2R-p2A-RFP and the 7EPACVY biosensor, we observed a transient full response on 7EPACVY even at the lowest concentrations used, which rendered the data unsuitable for concentration-response curve analysis (for raw YFP/CFP ratio traces, see Supplemental Fig. 6). From these data, we conclude that FRET biosensors can be used to assess antagonist specificity at receptors, and that they can be used to obtain single-cell concentration-response curves.

Discussion

Using several biosensors based on FRET, we have characterized the canonical G-protein-coupled signaling profiles of the four histamine receptors. Our results provide evidence that, besides the well-known activation of Goq, the H2R can also couple efficiently to Goα1 proteins, in agreement with previously published results (Murayama et al., 1990; Seifert et al., 1994). We also found a small increase in cAMP production following H2R activation, which provides evidence toward Goα1 coupling via H2R. Activation of the H3R greatly increased the production of cAMP, which was described previously, but surprisingly we also found a Goαq-mediated increase in Ca2+ upon stimulation of this receptor. The H2R and H3R seem to couple exclusively to Goα1 proteins, which is in good agreement with the literature. The absence of Ca2+ release by H2R and H3R indicates that Goαq-mediated activation of PLC, which is strongly cell-type dependent, is not effective under our conditions (Khan et al., 2013). Moreover, the experiments presented in this paper show that FRET biosensors can be used to examine antagonist specificity and potency of GPCR ligands. It must be noted that we did not assess the specific activation of Ga12/Ga13 proteins by histamine receptors, as robust and specific FRET sensors for this G-protein family do not exist yet. Still, we expect that Ga12/Ga13 activity can be picked up by the DORA RhoA sensor, and it can be separated from a Goq response by using the specific Goq inhibitor FR900359. The H2R-mediated activation of RhoA has been described in detail before and is specifically induced by Goq (van Unen et al., 2015a), but we cannot exclude the possibility that the small responses on the DORA RhoA biosensor after H2R and H3R activation are partly mediated by Ga12/Ga13 activation.

Previously, we determined that, under similar experimental conditions, HeLa cells have 710 fmol/mg binding sites for H2R (Adjobo-Hermans et al., 2011), which corresponds roughly to 680,000 receptors per cell at a 25% transfection efficiency (assuming a cell volume of 2 μl and a protein concentration of 0.2 μg/ml). We did not notice differences in fluorescence levels between the four different isoforms in this study, either when directly tagged or in the case of a cotranslated mCherry. We note that the fluorescence intensity of the cotranslated mCherry can be used as a measure for receptor level since the 2A peptide produces two proteins in a 1:1 stoichiometry.

Although not explored in this work, FRET biosensors are also very well suited to report spatial signaling information, which can be used to distinguish signaling at the plasma membrane (G-protein activation) from signaling in the cytosol (cAMP production/Ca2+ release) or other subcellular locations (Piljić and Schultz, 2008). Given the recent reports on intra-cellular GPCR signaling (Vilardaga et al., 2014; Tsvetanova et al., 2015), this would be an interesting avenue to explore for, e.g., the H2R with FRET biosensors in future studies.

There are multiple benefits of using FRET sensors over conventional biochemical assays to measure G-protein signaling. Ligand binding and unbinding kinetics can be determined with high temporal resolution (Lohse et al., 2012; van Unen et al., 2016), and concentration-response curve measurements can be obtained from single cells in real time, revealing cell-to-cell heterogeneity (e.g., Figs. 3–7, F and G). Specifically, the Goq FRET biosensors measure Goq activation in a more relevant cellular state than the classic biochemical assays that require forskolin-induced cAMP production. On the other hand, population-based methods allow for a higher throughput.

Furthermore, FRET biosensors can be multiplexed, meaning that multiple signaling readouts can be measured at the same time in the same single cell (Piljić and Schultz, 2008). A related approach is to combine information on the FRET biosensor readouts with spatial and temporal information on cell shape or cell behavior (van Unen et al., 2015a). The combination of FRET biosensors and microfluidics approaches (Martins et al., 2012; Sackmann et al., 2014) can be used to solve more detailed questions around GPCRs by delivering more precisely defined stimulations to cells (for example, repeated stimuli or gradients).

indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. HeLa cells were stimulated with histamine at t = 32 seconds, and the response was antagonized by the addition of the appropriate antagonist at t = 152 seconds. Time traces show the average ratio change of YFP/CFP fluorescence (± S.E.M.). AC, adenylyl cyclase; DAG, diacylglycerol; mDia, mammalian diaphanous-related formin 1; PKA, protein kinase A; PKC, protein kinase C; ROCK, Rho-associated coiled-coil-containing protein kinase.
Fig. 7. Gαi signaling by histamine receptors. (A) Activation of the heterotrimeric G-protein Gαi by the four histamine receptor subtypes, as measured by FRET ratio. (B) Hela cells transfected with H1R-p2A-RFP and the Gαi biosensor were treated with histamine and mepyramine (black). Control cells were transfected with only the Gαi biosensor (gray). In the control condition, cells were transfected with only the Gαi biosensor (gray). (C) Cells transfected with H2R-p2A-RFP and the Gαi biosensor were treated with histamine and ranitidine (black). In the control condition, cells were transfected with only the Gαi biosensor (gray). (D) Cells transfected with H3R-p2A-RFP and the Gαi biosensor were treated with histamine and thioperamide (black). In the control condition, cells were transfected with only the Gαi biosensor (gray). (E) Cells transfected with H4R-p2A-RFP and the Gαi biosensor were treated with histamine and thioperamide (black). In the control condition, cells were transfected with only the Gαi biosensor (gray). The median and average (+) amplitude of the FRET ratio change at t = 100 seconds (F) and the raw YFP/CFP ratio at t = 0 seconds (G) per receptor subtype, quantified from the experiments shown in (B–E). Box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles. HeLa cells were stimulated with histamine at t = 32 seconds, and the response was antagonized by the addition of the appropriate antagonist at t = 152 seconds. Time traces show the average ratio change of YFP/CFP fluorescence (± S.E.M.). AC, adenylyl cyclase; DAG, diacylglycerol; mDia, mammalian diaphanous-related formin 1; PKA, protein kinase A; PKC, protein kinase C; ROCK, Rho-associated coiled-coil-containing protein kinase.
We demonstrate that the contrast of several existing FRET biosensors is sufficient to use them for real-time single-cell analysis. Whether these FRET-based sensors provide sufficient sensitivity for high-throughput cell-based screening remains to be investigated.

A general limitation of (FRET-based) biosensors is the buffering or amplification of signals by the overexpressed biosensors. This is especially relevant at longer timescales when the signals are part of feedback or feedforward loops. This can be prevented by limiting the expression levels and measuring for short time periods.

A specific limitation of the G\(_\text{aq}\) and G\(_\text{ai}\) FRET biosensors is that they depend on overexpression of the heterotrimer, which possibly affects the natural coupling preference of the GPCR for certain classes of G-proteins. Future studies using gene-editing techniques such as CRISPR-Cas9 (Lackner et al., 2015) can overcome this limitation by tagging the endogenous subunits with fluorescent proteins instead.

A small percentage of the HEK293 control cells (5%) in the calcium release experiment show a response on the Ycam biosensor after the first stimulation with histamine. This possibly represents a G\(_\text{aq}\)-mediated response in cells that have a high expression of endogenous H\(_2\)R. There is conflicting evidence about endogenously expressed histamine receptors in HEK293 cells (Iwata et al., 2005; Atwood et al., 2011). A possible explanation could be that this G\(_\text{aq}\)-mediated response is due to the recently found heterodimerization or cross-talk of possible endogenous H\(_1\)R and the ectopically expressed H\(_2\)R (Alonso et al., 2013), which could also provide an alternative explanation for the results of the TEPACVV biosensor presented in Supplemental Fig. 4A.

A different additions of the concentration-response curves in our experiments are cumulatively added to cells. Because of the repeated stimulation regimen, desensitization effects or receptor internalization events could take place during our experiments. However, our obtained pEC\(_{50}\) values for histamine...
at the H2R (6.05), H3R (7.71), and H4R (8.09) compare well to previously published pEC_{50} values obtained in GTPase assays in SF9 insect cells (Seifert et al., 2013).

The concentration-response curves obtained with methylhistaprodifen show a preference of Gq over G12 when compared with the natural ligand histamine, suggesting ligand-biased signaling. Whether such a preference is conveyed to downstream signaling and a different physiologic outcome will be an interesting future direction.

Internal calcium release, as measured by the Ycm FRET biosensor, leads to a fast transient calcium spike in receptor overexpression conditions when stimulated with saturating agonist concentration. The measured responses after endogenous receptor stimulation (carbachol in our experiments) can differ vastly from oscillatory behavior in various frequencies to a single or multiple sparsely distributed spikes. Because of the extreme heterogeneity in responses, the all-or-nothing response pattern for overexpressed receptors, and the many factors that can contribute to the calcium signal (Berridge et al., 2000), we deemed these measurements not suitable for the generation of concentration-response curves. Similarly, we observed a transient response for the cAMP biosensor, hindering the determination of the potency of the H2R. In general, a requirement for obtaining concentration-response curves provides a valuable addition to the generation of concentration-response curves. Similarly, we observed a transient response for the cAMP biosensor, hindering the determination of the potency of the H2R. In general, a requirement for obtaining concentration-response curves from single-cell data is that the response of the biosensor reaches a plateau on a timescale of seconds. This seems to be a general feature of the heterotrimeric G-protein signaling. Whether such a preference is conveyed to downstream signaling and a different physiologic outcome will be an interesting future direction.

The authors thank Carsten Hoffmann (University of Würzburg, Germany) for critically reading the manuscript. The authors thank Carsten Hoffmann (University of Würzburg, Germany) for critically reading the manuscript.

Acknowledgments

The authors thank H. Vischer (VU University) for providing cDNA encoding H3R, and A. Pietraszewska (University of Amsterdam) for the cloning of N1-H4R-mCherry and N1-H4R-p2A-mCherry. We are grateful to W. van Unen, Rashidfarrokhi. Conduced experiments: van Unen, Rashidfarrokhi, Hoogendoorn, Postma, Goedhart.

Conducted experiments: van Unen, Rashidfarrokhi, Hoogendoorn, Postma, Goedhart.

Wrote or contributed to the writing of the manuscript: van Unen, Rashidfarrokhi, Hoogendoorn, Postma, Goedhart.

References

