Identification and Structure-Function Study of Positive Allosteric Modulators of Kainate Receptors

Anja Probst Larsen, Sabine Fièvre, Karla Frydenvang, Pierre Francotte, Bernard Pirotte, Jette Sandholm Kastrup, and Christophe Mulle

Biostuctural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.P.L., K.F., J.S.K.); Interdisciplinary Institute for Neuroscience, University of Bordeaux, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, Bordeaux, France (A.P.L., S.F., C.M.); and Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium (P.F., B.P.)

Received November 30, 2016; accepted March 28, 2017

ABSTRACT

Kainate receptors (KARs) consist of a class of ionotropic glutamate receptors, which exert diverse pre- and postsynaptic functions through complex signaling regulating the activity of neural circuits. Whereas numerous small-molecule positive allosteric modulators of the ligand-binding domain of (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propanoic acid (AMPA) receptors have been reported, no such ligands are available for KARs. In this study, we investigated the ability of three benzothiadiazine-based modulators to potentiate glutamate-evoked currents at recombinantly expressed KARs. BPAM344, 4-cyclopropyl-7-fluoro-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM521) potentiated the recorded peak current amplitude of GluK2a 12-fold at a concentration of 300 μM with an EC50 value of 159 μM, whereas no potentiation of the glutamate-evoked response was observed for 7-chloro-4-(2-fluoroethyl)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM121) at the highest concentration of modulator tested (300 μM). BPAM344 (100 μM) also potentiated the peak current amplitude of KAR subunits GluK3a (59-fold), GluK2a (15-fold), GluK1b (5-fold), as well as the AMPA receptor subunit GluA1 (5-fold). X-ray structures of the three modulators in the GluK1 ligand-binding domain were determined, locating two modulator-binding sites at the GluK1 dimer interface. In conclusion, this study may enable the design of new positive allosteric modulators selective for KARs, which will be of great interest for further investigation of the function of KARs in vivo and may prove useful for pharmacologically controlling the activity of neuronal networks.

Introduction

Kainate receptors (KARs) are ionotropic glutamate receptors (iGluRs) composed of tetrameric assemblies of the GluK1–5 subunits (Pinheiro and Mulle, 2006; Lerma and Marques, 2013). Each subunit consists of the extracellular N-terminal domain (NTD), a ligand-binding domain (LBD), a helical transmembrane domain (TMD), and an intracellular, highly flexible C-terminal domain. The TMDs show 4-fold symmetry, whereas the LBDs and NTDs show 2-fold symmetry and are arranged as dimer-of-dimers (Sobolevsky et al., 2009). Each LBD contains two subdomains, D1 and D2, forming a clamshell-like structure with the agonist-binding site located between D1 and D2, and two adjacent D1 domains forming the LBD dimer interface. Upon agonist binding, D2 moves toward D1, transforming a conformational strain to the TMD, which promotes channel opening. The receptor can undergo either desensitization (disruption of the D1-D1 interface with glutamate still bound) or deactivation (unbinding of glutamate), which leads to channel closure (Armstrong and Gouaux, 2000; Sobolevsky et al., 2009).

Although postsynaptic N-methyl-D-aspartic acid and (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propanoic acid (AMPA) receptors (AMPARs) mediate most of the basal excitatory synaptic transmission, KARs display more diverse functions that rely on a variety of subcellular localization and signaling mechanisms to regulate the activity of neural circuits. Progress in understanding the physiologic functions and pharmacology of KARs at a cellular as well as at whole brain levels has lagged behind the other iGluRs due, in part, to a lack of selective pharmacological agents (Jane et al., 2009). Subunit selective agonists and antagonists for KARs that

ABBREVIATIONS: AMPA, (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propanoic acid; AMPAR, AMPA receptor; BPAM97, 4-ethyl-7-fluoro-3,4-dihydro-2H-1,2,4-benzothiazadine 1,1-dioxide; BPAM121, 7-chloro-4-(2-fluoroethyl)-3,4-dihydro-2H-1,2,4-benzothiazadine 1,1-dioxide; BPAM344, 4-cyclopropyl-7-fluoro-3,4-dihydro-2H-1,2,4-benzothiazadine 1,1-dioxide; BPAM521, 4-cyclopropyl-7-hydroxy-3,4-dihydro-2H-1,2,4-benzothiazadine 1,1-dioxide; IDRA21, 7-chloro-3-methyl-3,4-dihydro-2H-1,2,4-benzothiazadine 1,1-dioxide; iGluR, ionotropic glutamate receptor; KAR, kainate receptor; LBD, ligand-binding domain; NTD, N-terminal domain; PEG4000, polyethylene glycol 4000; TMD, transmembrane domain; vdW, van der Waals.
contain GluK1 subunits have been developed, whereas no selective ligands for the other KAR subunits have been identified despite intense efforts (Jane et al., 2009).

Multiple allosteric-binding sites for small-molecule positive and negative modulators, ions, and polyamines as well as toxins have been identified in the NTD, LBD, and TMD of iGlurRs (Zhu and Gouaux, 2017). The AMPAR LBD dimer interface harbors a binding site for several classes of positive allosteric modulators (Pohlsgaard et al., 2011), such as cyclothiazide (Sun et al., 2002) and aniracetam (Jin et al., 2005). Much less is known about allosteric modulation of KARs. Concanavalin A and a few other plant lectins have been identified as positive allosteric modulators (Partin et al., 1993; Bowie et al., 2003). Sodium and chloride ions are essential for proper KAR function by stabilizing the LBD dimer interface (Paternain et al., 2003; Plested and Mayer, 2007; Plested et al., 2008). Interestingly, zinc ions have a unique, potentiating effect selective for the KAR subunit GluK3 upon binding (Veran et al., 2012). Much less is known about allosteric modulation of KARs. We seek to identify small molecules acting as positive allosteric modulators of KARs. Novel 1,2,4-benzothiadiazine 1,1-dioxides (BTDs), which are structurally related to the BTD reference compound 7-chloro-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (IDRA21) (Fig. 1), act as positive allosteric modulators of the AMPARs (Francotte et al., 2007, 2008, 2010, 2013, 2014; Krintel et al., 2012, 2016; Nørholm et al., 2013, 2014; Larsen et al., 2016). Starting from IDRA21, removal of the methyl group at the 3-position and introduction of a short alkyl chain at the 4-position of the BTD scaffold was responsible for a marked improvement of in vitro and in vivo activity on AMPARs, as observed with 7-halo-substituted compounds, such as the 7-fluoro derivative 4-ethyl-7-fluoro-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM97) (Francotte et al., 2007). Pharmacokinetic properties (metabolic stability) were subsequently improved by introducing a monofluoroethyl chain at the 4-position of the heterocycle, providing compounds such as 7-chloro-4-(2-fluoroethyl)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM121) (Francotte et al., 2010). A further improvement of the pharmacokinetic profile as well as the biologic activity was reached with 4-cyclopropyl-substituted BTDs, among which 4-cyclopropyl-7-fluoro-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM344) emerged as a very interesting compound (Nørholm et al., 2013). A more recent evolution occurred with the discovery of potent AMPAR modulators, such as 4-cyclopropyl-7-hydroxy-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM521), bearing a hydroxyl group at the 7-position of the heterocycle (Krintel et al., 2016). Several of the BTDs were co-crystallized with the LBD of the GluA2 subunit of AMPARs, showing that all of these compounds have the same binding mode at the level of the LBD dimer interface (Krintel et al., 2012, 2016; Nørholm et al., 2013, 2014; Francotte et al., 2014; Larsen et al., 2016). Due to structural analogy between AMPARs and KARs, we tested whether the structurally simple and low-molecular-weight compounds BPAM121, BPAM344, and BPAM521 may act as possible positive allosteric modulators of KARs.

Materials and Methods

All chemicals and reagents were from Sigma-Aldrich (St. Louis, MO) and were of analytical grade unless otherwise stated. BPAM121 (Francotte et al., 2010), BPAM344 (Nørholm et al., 2013), and BPAM521 (Krintel et al., 2016) were synthesized as previously described.

Cell Culture and Transfection. HEK293 cells (European Collection of Cell Cultures, Public Health England, Salisbury, UK) were co-transfected using the Effectene Kit (Qiagen, Hilden, Germany) with green fluorescent protein and GluK1b, GluK2α, or GluK1α, at a cDNA ratio of 1.5:1 (GluK1b:GluK2α:GluK1α) or 1:1:1 (GluK3α). Cells were used 2–3 days after transfection and plated on polylysine-coated coverslips the day before the experiment for whole-cell recordings, or 1–2 days before recordings for outside-out patches.

Electrophysiology. Cells were placed in a chamber perfused with HEPES-buffered solution containing 145 mM NaCl, 10 mM HEPES, 2 mM KCl, 2 mM MgCl₂, 2 mM CaCl₂, and 10 mM glucose, adjusted to 310 mOsm/l and pH 7.4 with NaOH, at room temperature. Recording pipettes (resistance 3–6 MΩ) were filled with an intracellular solution containing 120 mM CsCl₂SO₄, 2 mM NaCl, 3 mM MgCl₂, 10 mM EGTA, 10 mM HEPES, and 4 mM Na₂ATP, adjusted to 300 mOsm/l and pH 7.2 with CsOH. Isolated, brightly fluorescent cells were chosen for recording at room temperature. The membrane potential was held at −80 to −20 mV in whole-cell or outside-out patch-clamp mode. Cells or outside-out patches were placed under a double-barrel pipette mounted on a piezo-electric translator (P-245.50 and E-470 amplifier; Polytec PI, Châtillon, France). In whole-cell recordings, the membrane capacitance and series resistance were compensated at 80%. The modulator was added to both glutamate solution and HEPES-buffered solution (control), and up to three different concentrations of modulator were applied to a cell or outside-out patches during one experiment using a manual valve. Modulator solutions were prepared on the day of experiment from a 1 M stock solution in dimethylsulfoxide. Glutamatergic receptor–mediated currents were evoked by long (800 ms) or short (1 ms) applications of glutamate (1–10 mM) every 20 seconds (20- to 150-second intervals, depending on modulator concentration), filtered at 2.9 kHz, and recorded at a sampling frequency of 20 Hz by an EPC9 amplifier (HEKA Elektronik Dr. Schulze GmbH, Ludwigshafen/Rhein, Germany).

Data Analysis. IGOR Pro (version 6.22A; WaveMetrics Inc., Lake Oswego, OR) was used for data analysis of recorded traces. The baseline was corrected manually. Peak current amplitudes were measured from the average trace of five stable sweeps using standard functions in the software. Decay time (τ) was assessed by fitting the current trace with a two-exponential equation:

\[F = Y_0 + A_1 \exp \left(-\frac{(x - X_0)}{T_1} \right) + A_2 \exp \left(-\frac{(x - X_0)}{T_2} \right) \]

giving the weighted tau (τ) as:

\[\tau = \frac{(A_1 T_1 + A_2 T_2)}{(A_1 + A_2)} \]

GraphPad Prism (version 5.0c for Mac OS X; GraphPad Software, San Diego, CA) was used for curve fitting by nonlinear regression, bar

Fig. 1. Structures of IDRA21, BPAM97, BPAM344, BPAM521, and BPAM121. Atom numbering is shown for BPAM344.
graph plots, and statistical analysis. One-way analysis of variance with Bonferroni’s post test was used to assess differences between modulators or receptor subtypes, and paired Student’s t test was used for assessment of difference in amplitude and decay times, with the following coding: ***P < 0.001; **P < 0.01; *P < 0.05; (ns not significant), P > 0.05. Data are presented as the mean ± S.E.M. in both the text and figures.

Crystalization. Rat GluK1-LBD, comprising LBD segment S1 residues 430–544 and segment S2 residues 667–805 connected by a glycine-threonine linker (UNP P22756, numbering including signal peptide), was expressed and purified as previously described (Naur et al., 2005). The protein was dissolved in 10 mM HEPES (pH 7.0), 20 mM NaCl, and 1 mM EDTA.

BPAM121, BPAM344, and BPAM521 were added to the protein solution as solid compound. The protein solution was equilibrated at 6°C for at least 24 hours prior to setting up drops. Protein-ligand complexes were crystallized by the hanging-drop vapor-diffusion method at 6°C. The reservoir volume was 500 μl. For crystallization of BPAM121 with GluK1-LBD, a protein concentration of 4.4 mg/ml was used containing 10 mM kainate. The reservoir consisted of 1 μl of protein solution and 2 μl of reservoir solution (15.2% PEG4000, 0.3 M LiSO4, and 0.1 M NaOAc, pH 5.5). For crystallization of BPAM521 with GluK1-LBD, a protein concentration of 4.6 mg/ml was used containing 8.3 mM kainate. The drop consisted of 1 μl of protein solution and 1 μl of reservoir solution (16% PEG4000, 0.2 M LiSO4, and 0.1 M phosphate-citrate, pH 4.5). Crystals were briefly submerged in the reservoir solution containing 20–30% glycerol as cryoprotectant and flash cooled in liquid nitrogen before storage.

Structure Determination. X-ray diffraction data were collected at beamline I111-3 (MAX-Laboratory, Lund, Sweden) (Ursby et al., 2013) at a cryogenic temperature (100 K). Data were processed using XDS (Kabsch, 2010) and SCALA (Evans, 2006) in the CCP4 suite of programs (Winn et al., 2011). The structures were solved by molecular replacement in Phaser (McCoy et al., 2007) using the structure of GluK1-LBD in complex with kainate (Protein Data Bank identifier 4e0x, chain A). Initial model building was performed using AUTOBUILD (Terwilliger et al., 2008) in PHENIX (Adams et al., 2010), and water molecules were introduced into the structures at this step. During iterative rounds of model building in COOT (Emsley et al., 2010) and refinement in PHENIX (Adams et al., 2010), and water molecules were gradually built into the structures. Ligand coordinate files were generated in MAESTRO (version 9.4; Schrödinger, LLC, New York, NY), and topology and parameter files were generated in eLBOW (Moriarty et al., 2009). Data collection and refinement statistics are given in Table 1.

Domain closures were calculated relative to a GluK1-LBD structure with an antagonist (Protein Data Bank identifier 3s2v, chain B) using the DynDom server (Hayward and Berendsen, 1998). All structure figures were prepared in PyMOL (version 1.7; PyMOL Molecular Graphics System, V.S., LLC, pymol.org).

Results

Three BTD compounds (BPAM121, BPAM344, and BPAM521) (Fig. 1) were tested as potential positive allosteric modulators of recombinant KARs expressed in HEK293 cells using whole-cell and outside-out patch-clamp recordings. Interaction of the compounds with KARs at the molecular level was investigated by solving high-resolution X-ray crystal structures of each compound bound to the GluK1-LBD dimer.

Table 1

| Crystal data, data collection, and refinement statistics of GluK1-LBD in complex with kainate and BPAM344, BPAM121, or BPAM521 |
|---------------------------------|-----------------|-----------------|-----------------|
| Complex | BPAM344 | BPAM121 | BPAM521 |
| Crystal data | PDB ID | | |
| Space group | P41212 | P41212 | P41212 |
| Unit cell: a, b, c (Å) | 71.01, 71.01, 234.85 | 68.64, 68.64, 234.85 | 68.77, 68.77, 232.89 |
| Molecules in a.u. n | 2 | 2 | 2 |
| Data collection | | | |
| Wavelength (Å) | 0.97916 | 1.00000 | 0.97879 |
| Resolution (Å) | 29.43–1.90 | 29.43–1.90 | 41.212–2.10 |
| No. of unique reflections | 48,493 (6941) | 33,935 (4833) | 29,453 (3750) |
| Average redundancy | 8.1 (8.2) | 8.2 (7.1) | 5.8 (2.5) |
| Completeness (%) | 100 (100) | 99.9 (99.9) | 97.8 (97.8) |
| Rmerge | 0.072 (0.316) | 0.086 (0.372) | 0.074 (0.152) |
| Rwork | 8.0 (2.2) | 7.0 (2.0) | 7.1 (4.6) |
| Wilson B (Å²) | 17 | 23 | 25 |
| Refinement | | | |
| Amino acid residues (A/B) | 253/254 | 249/253 | 250/251 |
| Kainate/modulator/chloride/sulfate/glycerol/acetate/water | 2/2/1/2/3/ · / .582 | 2/2/1/2/1/476 | 2/2/1/3/1/324 |
| Rwork, Rmerge (%) | 15.5/19.5 | 16.3/21.9 | 16.7/21.5 |
| Average B values (Å²) for: | | | |
| Amino acid residues (A/B) | 22/22 | 17/19 | 30/30 |
| Kainate/modulator/chloride/sulfate/glycerol/acetate/water | 14/11/3577/4/32 | 8/175/30/255/89/23 | 17/20/36/14/339/30 |
| R.M.S. deviation bond lengths (Å) (°) | 0.060/1.11 | 0.006/1.00 | 0.008/1.00 |
| Ramachandran outliers (°) | 0.0/98.3 | 0.2/99.0 | 0.0/98.4 |
| Rotamer outliers (%) Cβ outliers (%) clash score f | 1.5/0.19 | 0.89/0.17 | 1.6/0.20 |

PDB ID, Protein Data Bank identifier.

n.a. is the asymmetric unit of the crystal.

Values in parentheses correspond to the outermost resolution shell.

Rmerge is calculated as follows: \(R_{\text{merge}} = \sum_{hkl} |F_{\text{obs}} - F_{\text{calc}}| / \sum_{hkl} |F_{\text{obs}}| \), where \(F_{\text{obs}} \) and \(F_{\text{calc}} \) are the observed and calculated structure factor amplitudes, respectively, for reflection \(hkl \).

Rwork is equivalent to Rmerge, but calculated with 5% of reflections omitted from the refinement process.

MolProbity statistics (Chen et al., 2010).
BPAM344 Is a Potent Positive Allosteric Modulator of GluK2α. The effect of BPAM344 on the measured peak current amplitude of GluK2α homomeric KARs was established using whole-cell recording and rapid solution exchange on lifted cells. In control conditions, a long (800 ms) pulse of glutamate (1 mM) evoked a transient response with a decay time constant of less than 10 ms, as previously reported (Perrais et al., 2010). Application of BPAM344 (100 μM) caused a major increase in the peak amplitude of the response to glutamate and an increase in its decay (Fig. 2A). At the highest concentration of modulator tested (200 μM), BPAM344 was found to potentiate the glutamate-evoked current by 21-fold. An upper plateau for the potentiation of peak current amplitude could not be reached due to the low solubility of the modulator at higher concentrations. The potency (EC50, corresponding to the concentration of modulator responsible for 50% of the maximal effect) was estimated as 79 ± 2 μM (Fig. 2B). Measured using outside-out patches, the decay time of desensitization of the glutamate-evoked response (1 mM) was increased from 5.5 ± 0.6 to 774.7 ± 68.0 ms in the presence of BPAM344 (100 μM) (Fig. 2C and D). BPAM344 was also tested on GluK2α currents evoked by a short (1 ms) pulse of glutamate to evaluate the effects of the compound on deactivation kinetics. BPAM344 induced a moderate increase in the estimated decay time of deactivation (1.5 ± 0.1 ms without BPAM344 present and 2.0 ± 0.1 ms with BPAM344 present, P < 0.001, Fig. 2E and F). Because of the fast desensitization kinetics of KAR subunits, the increase in peak current recorded in our experimental conditions most likely reflects an effect on receptor desensitization rather than an effect on activation kinetics (Perrais et al., 2009). Our data are consistent with a robust effect of BPAM344 on desensitization of KARs.

Comparative Effects of BPAM344 on Other KAR Subunits and on the AMPAR Subunit GluA1. Next, we tested the effects of BPAM344 on the recombinantly expressed KAR subunits GluK1b and GluK3a. BPAM344 (100 μM) increased the peak amplitude of GluK1b currents evoked by glutamate (1 mM) evoked a transient response with a decay time constant of less than 10 ms, as previously reported (Perrais et al., 2010). Application of BPAM344 (100 μM) caused a major increase in the peak amplitude of the response to glutamate and an increase in its decay (Fig. 2A). At the highest concentration of modulator tested (200 μM), BPAM344 was found to potentiate the glutamate-evoked current by 21-fold. An upper plateau for the potentiation of peak current amplitude could not be reached due to the low solubility of the modulator at higher concentrations. The potency (EC50, corresponding to the concentration of modulator responsible for 50% of the maximal effect) was estimated as 79 ± 2 μM (Fig. 2B). Measured using outside-out patches, the decay time of desensitization of the glutamate-evoked response (1 mM) was increased from 5.5 ± 0.6 to 774.7 ± 68.0 ms in the presence of BPAM344 (100 μM) (Fig. 2C and D). BPAM344 was also tested on GluK2α currents evoked by a short (1 ms) pulse of glutamate to evaluate the effects of the compound on deactivation kinetics. BPAM344 induced a moderate increase in the estimated decay time of deactivation (1.5 ± 0.1 ms without BPAM344 present and 2.0 ± 0.1 ms with BPAM344 present, P < 0.001, Fig. 2E and F). Because of the fast desensitization kinetics of KAR subunits, the increase in peak current recorded in our experimental conditions most likely reflects an effect on receptor desensitization rather than an effect on activation kinetics (Perrais et al., 2009). Our data are consistent with a robust effect of BPAM344 on desensitization of KARs.
glutamate (1 mM) by 5-fold (Fig. 3A) and markedly slowed down the decay kinetics of desensitization (from 42 ± 15 to 832 ± 64 ms in the presence of BPAM344 for whole-cell configuration; Fig. 3B). As previously reported, 1 mM glutamate did not evoke any detectable current in GluK3a-expressing cells (Schiffer et al., 1997), likely due to fast desensitization of partially bound receptors (Perrais et al., 2009). We observed that, in the presence of BPAM344, application of 3 mM glutamate led to the activation of a substantial current with slow decay (data not shown). To estimate the magnitude of potentiation of GluK3a currents by BPAM344, we used a concentration of glutamate of 10 mM. We observed a 59-fold potentiation of glutamate-evoked currents for GluK3a in the presence of BPAM344 (100 μM) (Fig. 3C). For comparison, 100 μM BPAM344 led to a 15-fold potentiation of the glutamate-evoked GluK2a currents. Thus, BPAM344 exerts a major effect on the three KAR subunits, GluK1b, GluK2a, and GluK3a, both on the peak amplitude of the response and on the decay kinetics. Moreover, the positive allosteric modulatory effect of BPAM344 is reversible at the three KAR subtypes. The time course for full recovery after washout of BPAM344 is 15.4 \pm 2.2 minutes at GluK1b, 29.2 \pm 4.2 minutes at GluK2a, and 38.2 \pm 0.9 minutes at GluK3a.

The potentiating effect of BPAM344 was, however, not restricted to KAR subunits; it caused a 5-fold increase in the peak amplitude of the current evoked by glutamate (10 mM) in HEK293 cells expressing the AMPAR subunit GluA1i. In addition, the current did not decay during the 800-ms pulse (Fig. 3D) and only slowly decayed after the exposure to glutamate was ceased, suggesting that BPAM344 has a positive modulatory effect on both desensitization and deactivation of the GluA1i receptor.

Small Modifications in Modulator Structure Greatly Influence Modulatory Effect. We then investigated the impact of small modifications of BPAM344, and more specifically the role of the substituent in the 4- and 7-positions of BPAM344. We characterized the potency of two variants of BPAM344, BPAM121, and BPAM521 on GluK2a (Fig. 4). The only structural difference between BPAM521 and BPAM344 is the substituent in the 7-position, with a hydroxyl group in BPAM521 and a fluorine atom in BPAM344. BPAM521 was found to potentiate the peak current amplitude of GluK2a 12-fold at a concentration of 300 μM (Fig. 4B). Again, a valid EC$_{50}$ value (potency estimated at 159 \pm 3 μM) could not be determined for BPAM121 (300 μM, orange bar) on GluK2a whole-cell recordings. BPAM344 significantly modulates currents compared with BPAM521 and BPAM121 ($P < 0.01$). (D and E) Effect of BPAM521 on desensitization kinetics (800-ms application) of glutamate-evoked responses (1 mM) for GluK2a outside-out patches of HEK293 cell membrane. (D) Example traces of the glutamate-evoked responses in the absence (black) and presence (blue) of 100 μM BPAM521. (E) BPAM521 (100 μM, blue bar) significantly ($P < 0.001$) increases the decay time of receptor desensitization compared with the response evoked by glutamate alone (white bar). Decay time (τ) is given as the mean \pm S.E.M. ($n = 6$). (F and G) Effect of BPAM521 on deactivation kinetics (1-ms glutamate application) of glutamate-evoked responses (1 mM) for GluK2a outside-out patches of HEK293 cell membrane. (F) Example traces of the glutamate-evoked responses in the absence (black) and presence (blue) of 100 μM BPAM521. (G) BPAM521 (100 μM, blue bar) has no significant effect ($P > 0.05$) on deactivation decay time. Decay time (τ) is given as the mean \pm S.E.M. ($n = 5$). (H) Example traces of the glutamate-evoked responses (1 mM for 800 ms) in the absence (black) and presence (orange) of 300 μM BPAM121 in GluK2a whole-cell recordings.
determined because a plateau could not be reached due to limited solubilization of the compound (Fig. 4B). BPAM521 caused an increase in the decay time of desensitization measured in outside-out patches from 3.7 ± 0.7 to 111.8 ± 11.6 ms in the presence of the modulator (Fig. 4, D and E). BPAM521 did not affect the time course of deactivation (2.2 ± 0.2 ms in control vs. 1.7 ± 0.5 ms in the presence of modulator; \(P > 0.05 \); Fig. 4, F and G). The effect of BPAM521 is also reversible with a time course for full recovery following a washout of 12.8 ± 0.7 minutes at GluK2a. Compared with BPAM344, BPAM121 contains a fluoroethyl substituent in the 4-position and a chlorine atom in the 7-position of the BTD scaffold. No potentiation of the glutamate-evoked response was observed for BPAM121 at the highest concentration of modulator tested (300 \(\mu \)M; Fig. 4, C and H). In addition, BPAM121 was without effect (4.7 ± 0.8 ms in control vs. 7.4 ± 1.7 ms in the presence of modulator, \(n = 3, P > 0.05 \)) on the desensitization (800-ms glutamate pulse) and on the deactivation time course (1 ms glutamate application; 2.3 ± 0.2 ms in control vs. 2.6 ± 0.3 ms in the presence of modulator, \(n = 3, P > 0.05 \)) when tested in the whole-cell configuration.

The Modulators Bind at the KAR LBD Dimer Interface. As crystallization with GluK2-LBD was not successful in our hands, we turned to crystals of GluK1-LBD. Structures of all three BTD compounds bound to the ligand-binding domain of GluK1 were determined by X-ray crystallography to resolutions of 1.9–2.2 Å. In the presence of kainate, GluK1-LBD forms a dimer (Plested et al., 2008; Venskutonytė et al., 2012). Therefore, we crystallized GluK1-LBD with kainate and BPAM344. The complex crystallized with a GluK1-LBD dimer in the asymmetric unit, where kainate was seen to bind at the orthosteric-binding site in both subunits of the dimer (Fig. 5). Two molecules of BPAM344 bind at the dimer interface in a site located around a pseudo 2-fold symmetry axis (Fig. 5). One chloride ion is bound at the well characterized anion-binding site (Plested and Mayer, 2007), whereas water molecules were most likely present at the two cation-binding sites (Plested et al., 2008) (Fig. 5).

One direct hydrogen bond is established from the sulfonamide N atom of BPAM344 to the backbone O atom of Pro532 (Fig. 6A). Furthermore, a water (W1)-mediated polar contact is seen from one O atom of the BPAM344 sulfonamide to the side-chain N atom of Gln786. In addition to polar contacts, multiple van der Waals (vdW) interactions between BPAM344 and surrounding residues (within 4 Å) from both subunits are seen. The sulfonamide O atoms are engaged in vDW interactions with Lys531, Pro532, and Leu783 in one subunit of the dimer, as well as Ile519 and Lys762 in the opposite subunit. The cyclopropyl group of BPAM344 is believed to have some \(\pi \)-character (Galano et al., 2007) and, thus, can form stacking interactions with the backbone atoms of Phe533-Thr535. Additional vDW interactions are seen from the cyclopropyl group with the side chains of Thr535, Gln786, and Leu791 in one subunit and Ser761 in the opposite subunit. Stacking interactions are also seen from the aromatic ring of BPAM344 with the peptide backbone of Lys762-Gly763 of the opposite subunit. All of these nonpolar interactions between BPAM344 and the receptor further stabilize the GluK1-LBD dimer interface in the active conformation.

We then determined the structure of GluK1-LBD in complex with kainate and BPAM521. As in the GluK1-LBD structure with BPAM344, two molecules of BPAM521 bind at the interface of the GluK1-LBD dimer. The BTD scaffold of BPAM521 is located very similar to that of BPAM344 and forms many of the same interactions with GluK1 residues (Fig. 6B). The largest differences between the two structures are at Thr535, Ser761, and Gln786, which adopt different conformations upon binding of BPAM344 and BPAM521, respectively (Fig. 6, A and B).

Similar to the first two structures, the third structure of GluK1-LBD in complex with kainate and BPAM121 revealed that two molecules of BPAM121 are located at the dimer interface. However, BPAM121 only partially occupies the binding site (the occupancy was refined to 69 and 61% for the two BPAM121 molecules). In the presence of BPAM121, the side chain of Thr535 points away from the modulator site (Fig. 6C).

Discussion

Functional and structural studies have revealed that endogenous ions and small molecules can modulate iGluR function. Interaction with small-molecule modulators permits activity-dependent changes in receptor function and could potentially be exploited in the development of therapeutics. However, no such small-molecule modulators other than ions are available today that target KARs. Here, we show that two compounds (BPAM344 and BPAM521), previously reported as AMPAR-positive allosteric modulators (Nørholm et al., 2013; Krintel et al., 2016), exert a strong positive modulatory effect on currents mediated by the homomeric KAR subunits GluK1b, GluK2a, and GluK3a. The reversibility of the modulatory effect of BPAM344 and BPAM521 distinguishes this...
new class of KAR modulators from lectins (e.g., concanavalin A), which bind at glycosylation sites (Everts et al., 1999) and irreversibly potentiate agonist-evoked currents (Huettner, 1990).

BPAM344 and BPAM521 increase the measured peak amplitude of evoked KAR current by 5- to 59-fold, depending on the subunit, and dramatically slow down decay kinetics. The most effective compound, BPAM344 displays larger a effect on potentiation of glutamate-evoked currents at GluK2a and GluK3a compared with at the AMPAR subunit GluA1, (3-fold between GluK2a and GluA1, and 12-fold between GluK3a and GluA1) (Fig. 3A). The effect of BPAM344 was similar at GluKib and GluA1. Interestingly, the third modulator, BPAM121, significantly potentiates the peak current amplitude of AMPARs (Francotte et al., 2010), whereas no potentiation of the glutamate-evoked response at GluK2a receptors was observed (Fig. 4, C and H). This observation highlights that small changes in the modulator structure dramatically influence its efficacy at KARs and AMPARs.

We observed a major effect of BPAM344 and BPAM521 on GluK2a desensitization, with 136- and 30-fold increases in desensitization time, respectively (Figs. 2D and 4E). The variable magnitude of potentiation of the response by BPAM344 (from 5- to 59-fold) for the different KAR subunits appears to correlate with differential desensitization properties; the highly desensitizing GluK3 subunit is 10 times more impacted by BPAM344 than the slowly desensitizing GluK1 subunit. The low sensitivity of GluK3 receptors for glutamate is attributable to fast desensitization of partially bound receptors (Perrais et al., 2009). Strikingly, at a concentration of 3 mM glutamate, BPAM344 revealed an inward current which was otherwise not detectable on GluK3 KARs (data not shown). The major effects of BPAM344 on GluK3a current amplitude and desensitization kinetics are reminiscent of the modulatory effect of zinc (Veran et al., 2012). Both the potentiation of GluK3 currents and the increased decay kinetics by micromolar concentrations of zinc were shown to result from reduced desensitization (Veran et al., 2012). Overall, our results fit well with the possibility that BPAM344 acts by reducing desensitization of KARs. In parallel, we show that deactivation, as indicated by the decay kinetics in response to short pulses of glutamate, is only affected by the BPAM compounds to a minor extent. For the AMPA receptor GluA1, we observed an effect of BPAM344 on both desensitization and deactivation. It has previously been suggested that positive allosteric modulators, such as aniracetam, slow deactivation by stabilizing the GluA2-LBD clamshell in its closed-cleft, glutamate-bound conformation (Jin et al., 2005). On the other hand, modulators with a dominant effect on desensitization, such as cyclothiazide, promote dimerization of the GluA2-LBD (Sun et al., 2002).

A soluble construct of the ligand-binding domain was crystallized in complex with kainate and each of the three modulators BPAM121, BPAM344, and BPAM521. The positive allosteric modulator–binding site was found to reside in the lower part of the GluK1 dimer interface, near the D1-D2 hinge region (Fig. 5). Two molecules of BPAM344 are located within 4 Å of each other, with the closest interactions between the 7-fluorine atom of one molecule and the aromatic C6 atom of the other molecule, as well as between the C6 atoms (Fig. 7A). Compared with structures of GluK1-LBD without a modulator bound (Plested et al., 2008; Venskutonytë et al., 2011), BPAM344 displaces four to eight water molecules in the dimer interface (Fig. 7B). Through hydrogen-bonding networks combined with vdW interactions, the modulators are anchored between the two subunits, thereby increasing the
stability of the dimer interface in the active conformation. Stabilization of the dimer interface has previously been suggested to slow down desensitization of AMPARs (Sun et al., 2002; Jin et al., 2005) and KARs (Plested and Mayer, 2007; Veran et al., 2012). Consistent with a role of BPAM344 and BPAM521 in stabilizing the dimer interface, these compounds strongly reduce desensitization of GluK1, GluK2a, and GluK3a.

In contrast, only a limited effect on deactivation kinetics was observed (Figs. 2F and 4G). The domain closure of GluK1-LBD in complex with kainate and BPAM344 (26° in both subunits) is similar to that of GluK1-LBD structures with kainate alone (25–28°) (Møllerud et al., 2017). Binding of BPAM521 and BPAM212 also does not lead to significant changes in domain closure (26° in subunit A and 27° in B). Thus, D1-D2 hinge region movements and agonist binding do not seem to be affected upon binding of small molecules at the modulator-binding site in GluK1.

Similar to BPAM344, BPAM521 contains a cyclopropyl group in the 4-position of the BTD scaffold, whereas the 7-fluorine atom in BPAM344 is replaced by a hydroxyl substituent. This allowed us to investigate the role of a strong

![Fig. 7](image-url). Displacement of water molecules, specific side-chain comparisons, and chloride-binding site. (A) The location of the two BPAM344 molecules at the modulator-binding site in GluK1-LBD relative to the chloride ion-binding site (green sphere). (B) Displacement of water molecules by BPAM344 (green sticks) at the dimer interface. GluK1-LBD (Protein Data Bank identifier 4e0x) is shown with subunit A in beige and subunit B in gray, and water molecules are shown as black spheres. One conserved water molecule in the structure with BPAM344 is shown as a red sphere. (C) Comparison of the side-chain conformation of Thr535 with BPAM344 bound (GluK1 subunit colored beige, BPAM344 green) and BPAM521 bound (GluK1 subunit colored white, BPAM521 cyan). The hydrogen bond from the 7-hydroxyl group in BPAM521 to the side-chain hydroxyl group in Thr535 is shown as a stippled line. (D) Comparison of BPAM344 binding in GluK1-LBD and GluA2-LBD (Protein Data Bank identifier 4n07). The two residues located within 4 Å of the modulator are shown in stick representation. GluA2 is shown in dark salmon for subunit A and dark gray for subunit B. BPAM344 is shown in green in GluK1 and dark green in GluA2.)
hydrogen bond acceptor in the modulator. Substituting the 7-fluorine atom of BPAM344 with the hydroxyl group in BPAM521 was shown to significantly decrease potency and desensitization decay time (Figs. 2 and 4). Comparing GluK1-LBD in complex with BPAM344 and BPAM521, respectively, one major difference is found in the modulator-binding site with respect to the Thr535 side-chain conformation (Fig. 7C). With BPAM344 bound, Thr535 adopts a conformation where the side-chain methyl and hydroxyl groups point away from the 7-fluorine atom of BPAM344. In contrast, flexibility is seen in the Thr535 side chain when BPAM521 is bound. Thr535 adopts two different conformations, both having the hydroxyl group facing the binding site, which allows for the formation of a polar contact to the 7-hydroxy group of BPAM521. This suggests an important role of Thr535 in positive allosteric modulation of KARs.

The location and interactions of the modulators are similar to those seen in the structures of the AMPAR GluA2-LBD with BPAM344 (Nørholm et al., 2013) and BPAM521 (Krintel et al., 2016) (Fig. 7D). Within 4 Å of the modulators, two residues differ between GluK1-3 and GluA1-2: Thr535 in KARs that correspond to Ser518 in AMPARs, and Gln786 in KARs that correspond to Ser775 in the AMPAR flap isoform or Asn775 in the flop isoform (Fig. 7D). The side chain of Gln786 in GluK1 points away from the modulator-binding site, and therefore does not have close contact with the modulators. Thr535 could adopt several conformations in each subunit of GluK1-LBD with kainate (Plested et al., 2008; Venskutonytė et al., 2012), whereas we observed a single conformation when BPAM344 was bound. This suggests that the 7-fluorine atom locks Thr535 in a position pointing away from the modulator, thereby forming a sterical interaction only (~3.5 Å between 7-fluorine atom of BPAM344 and the Thr535 Cα2 atom). A similar conformation of Thr535 is observed with BPAM21 bound to avoid steric clash between the 7-chlorine atom of BPAM21 and the side chain of Thr535 (~3.4 Å between 7-chlorine atom of BPAM21 and the Thr535 Cα2 atom). These close contacts, combined with no significant potency of BPAM21 at GluK2a, suggest that a small substituent, e.g., fluorine, in the 7-position of the BTD scaffold is required for a conformational effect when targeting KARs. The conformational restriction of Thr535 in GluK1 in the presence of the modulator most likely results in an entropic penalty, partly explaining the ~90-fold lower potency of BPAM344 at GluK2a compared with AMPARs (EC50 of 0.9 μM) (Nørholm et al., 2013).

Two cations and one anion are critical for proper functioning of KARs (Paternain et al., 2003; Plested and Mayer, 2007; Plested et al., 2008; Chaudhry et al., 2009; Bowie, 2010). In the GluK1-LBD structures, the chloride ion is still present, being located 7.2 Å from the sulfonamide O atom of BPAM344 (Fig. 7A), whereas no cations could confidently be modeled in the cation-binding sites. The two modulator-binding sites are separated from the anion-binding site by Lys531 from each subunit of the dimer. This shows that the two modulatory sites and the anion-binding site can be occupied simultaneously, and suggests that the modulator-binding sites do not interfere with the ion-binding sites.

In conclusion, we have characterized promising positive allosteric modulators of KARs capable of increasing glutamate-evoked currents 21-fold at GluK2a and 59-fold at GluK3a. Despite the mid-micromolar range potency of the modulator, BPAM344 may prove a useful pharmacological tool, e.g., to slow the entry into the desensitized state of fast desensitizing KARs for identification of orthosteric ligands (e.g., agonists or partial agonists) as well as functional studies in vivo. However, it remains to be determined whether these compounds are also effective on native KARs, keeping in mind that the major population of KARs in the brain are heteromers composed of GluK2 and GluK5. Our structure-function study should help in designing new compounds with high selectivity of kainate over AMPA receptors. KARs control the activity of neuronal circuits, in particular in the hippocampus (Carta et al., 2014), likely taking part in spatial memory and behavioral flexibility (Micheau et al., 2014). It will be interesting to test whether selective KAR-positive allosteric modulators may improve cognitive functions.

Acknowledgments

The authors thank MAX-Laboratory for providing beamtime.

Authorship Contributions

Participated in research design: Larsen, Fièvre, Frydenvang, Pirotte, Kastrup, Mulle.

Conducted experiments: Larsen, Frydenvang, Kastrup.

Contributed new reagents or analytic tools: Francotte, Pirotte.

Performed data analysis: Larsen, Fièvre, Frydenvang, Kastrup, Mulle.

Wrote or contributed to the writing of the manuscript: Larsen, Pirotte, Kastrup, Mulle.

References

