MINI SPECIAL SECTION—STRUCTURAL BASIS OF RECEPTOR-LIGAND INTERACTIONS

Novel Mode of Antagonist Binding in NMDA Receptors Revealed by the Crystal Structure of the GluN1-GluN2A Ligand-Binding Domain Complexed to NVP-AAM077

Annabel Romero-Hernandez and Hiro Furukawa
Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (A.R.-H., H.F.); and Watson School of Biological Sciences, Cold Spring Harbor, New York (A.R.-H., H.F.)

Received December 15, 2016; accepted May 1, 2017

ABSTRACT

Competitive antagonists against N-methyl-D-aspartate (NMDA) receptors have played critical roles throughout the history of neuropharmacology and basic neuroscience. There are currently numerous NMDA receptor antagonists containing a variety of chemical groups. Among those compounds, a GluN2-specific antagonist, (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl-phosphonic acid (NVP-AAM077), contains a unique combination of a dioxoquinoxalinyl ring, a bromophenyl group, and a phosphono group. In this study, we present the crystal structure of the isolated ligand-binding domain of the GluN1-GluN2A NMDA receptor in complex with the GluN1 agonist glycine and the GluN2A antagonist NVP-AAM077. The structure shows placement of the dioxoquinoxalinyl ring and the phosphono group of NVP-AAM077 in the glutamate-binding pocket in GluN2A and the novel interaction between the bromophenyl group and GluN1-Glu781 at the GluN1-GluN2A subunit interface. Site-directed mutagenesis of GluN1-Glu781 reduced the potency of inhibition by NVP-AAM077, thus confirming the involvement of the GluN1 subunit for binding of NVP-AAM077. The unique antagonist-binding pattern shown in this study provides a novel dimension to design and create antagonists with potential therapeutic values.

Introduction

Antagonists against N-methyl-D-aspartate (NMDA) receptors have played critical roles to delineate the physiologic roles of NMDA receptors in brain functions and in neurologic disorders and diseases in many studies. NMDA receptors belong to the large family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. Dysfunctional NMDA receptors have been implicated in various neurologic disorders and diseases, including schizophrenia, depression, Alzheimer’s disease, stroke, and seizure. Thus, in addition to applications in basic neuroscience research, NMDA receptor antagonists have drawn significant attention as potential therapeutic reagents. The effort to develop competitive NMDA receptor antagonists started from D-α-amino adipate (McLennan and Lodge, 1979) with moderate specificity and potency, leading to the significantly more potent NMDA-selective compound, D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5) (Evans et al., 1982) containing the amino acid backbone and a phosphono group. This was followed by compounds with phenanthrene backbones such as 1-(phenanthrene-2-carbonyl)-piperazine-2, 3-dicarboxylic acid (PPDA) (Feng et al., 2004). Furthermore, another compound, (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl-phosphonic acid (NVP-AAM077), with an anticonvulsant effect in animals became available (Auberson et al., 2002) (Fig. 1A). NVP-AAM077 was originally reported to have over 100-fold specificity toward the GluN1-GluN2A NMDA receptors over GluN1-GluN2B NMDA receptors but was later shown to have only ~fivefold specificity through more accurate and extensive pharmacological analyses (Frizelle et al., 2006). NMDA receptors, like any other iGluR family members, are heterotetrameric ion channels composed of two GluN1

ABBREVIATIONS: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; ATD, amino-terminal domain; D-AP5, D-(-)-2-amino-5-phosphonopentanoic acid; iGluR, ionotropic glutamate receptor; LBD, ligand-binding domain; LLG, Log-likelihood gain; NAM, negative allosteric modulator; NMDA, N-methyl-D-aspartate; NVP-AAM077, (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl-phosphonic acid; PPDA, 1-(phenanthrene-2-carbonyl)-piperazine-2, 3-dicarboxylic acid; RFZ, Rotation function Z-score; TFZ, translation function Z-score; TMD, transmembrane domain; LLG, Log-Likelihood Gain; RFZ, Rotation function Z-score; TFZ, Translation function Z-score.
subunits and two GluN2 and/or GluN3 subunits (Traynelis et al., 2010). The eight splice variants of the GluN1 subunits (1a-4a and 1b-4b) and the two GluN3 subunits (A–B) bind to glycine, whereas the four GluN2 subunits (A–D) bind to glutamate or NMDA. All of the above subunits contain modular domains, including an amino-terminal domain (ATD), a ligand-binding domain (LBD), a transmembrane domain (TMD), and a carboxyl-terminal domain (CTD). The LBDs bind agonists, coagonists, competitive antagonists, and allosteric modulators to control gating properties of the ion channel pore formed by the TMD. The ATD regulates channel properties such as open probability and speeds of activation and deactivation (Gielen et al., 2009; Yuan et al., 2009), and also binds to allosteric modulators to either potentiate or inhibit the channel activities (Williams, 1993, 1997; Karakas et al., 2011) in a subtype-specific manner.

Our recent crystallographic study on the GluN1-GluN2A LBD unraveled the binding pattern of two antagonists, D-AP5 and PPDA (Jespersen et al., 2014). This study showed that the α-carboxylate group contained in both of these compounds interacts with a conserved arginine residue (Arg518 in GluN2A), whereas distinct chemical moieties of D-AP5 and PPDA occupy different subsites, which we named Site I and Site II (Jespersen et al., 2014). Specifically, Site I accommodates the phosphono group of D-AP5 via direct polar interactions, and Site II binds to the phenanthrene group of PPDA mainly via hydrophobic interactions. A compound that does not occupy Site I, such as PPDA, can also bind and inhibit α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors and kainate receptors, indicating that the interaction between Site I and the phosphono group is a critical determinant for the specificity toward NMDA receptors. NVP-AAM077 has a unique bromophenyl substitution at the amino group nitrogen, which led us to hypothesize that the binding mode for NVP-AAM077 may be distinct from the ones for D-AP5 and PPDA. Structural studies on the intact NMDA receptor ion channels by X-ray crystallography and cryo-electron microscopy have shown patterns of conformational alterations linked to functions in multiple domains, which are associated with activation and inhibition (Karakas and Furukawa, 2014; Lee et al., 2014; Tajima et al., 2016; Zhu et al., 2016). However, the structural studies on the intact NMDA receptors have not been ideal for monitoring exact compound binding modes at the atomic level due to their low resolution nature (3.6–15 Å). For this reason, in this study, we implemented X-ray crystallography on the isolated GluN1-GluN2A LBD heterodimer, which is amenable to high-resolution structural analysis. We report in this work a crystal structure of the GluN1-GluN2A LBD complexed to NVP-AAM077 at 1.6 Å resolution. The structure shows a previously unobserved mode of antagonist binding involving residues from both GluN1 and GluN2A. Despite the unique binding mode, the NVP-AAM077 binding stabilizes the open-cleft conformation of the bi-lobed architecture of the GluN2A LBD in a similar manner to the D-AP5 and PPDA bindings. Additionally, the crystal structure also explains why NVP-AAM077 does not qualify as a GluN2A-specific antagonist.

Materials and Methods

Expression and Purification of GluN1 and GluN2A LDGs. The rat GluN1 LBD is defined as S1 (Met394 to Lys544) and S2 (Arg663 to Ser800) connected by a Gly-Thr dipeptide linker and was expressed in OrigamiB (DE3) cells (Novagen, Darmstadt, Germany) under the T7 promoter in pET22b(+) as described previously (Furukawa and Gouaux, 2003; Jespersen et al., 2014). After growing cells to an optical density600 = 1.5, protein expression was induced by 0.5 mM isopropyl-beta-D-1-thiogalactopyranoside for 22 hours at 15°C. The protein was purified using nickel-nitrilotriacetic acid chelating Sepharose, followed by thrombin digestion to remove the polyhistidine tag. The digested product was purified by a SP-Sepharose column (GE Healthcare), as described previously (Jespersen et al., 2014). Expression and purification of GluN2A LBDs. The rat GluN2A LBD is defined as S1 (Met394 to Lys544) and S2 (Arg663 to Ser800) connected by a Gly-Thr linker and was expressed in OrigamiB (DE3) cells (Novagen, Darmstadt, Germany) under the T7 promoter in pET22b(+) as described previously (Furukawa and Gouaux, 2003; Jespersen et al., 2014). After growing cells to an optical density600 = 1.5, protein expression was induced by 0.5 mM isopropyl-beta-D-1-thiogalactopyranoside for 22 hours at 15°C. The protein was purified using nickel-nitrilotriacetic acid chelating Sepharose, followed by thrombin digestion to remove the polyhistidine tag. The digested product was purified by a SP-Sepharose column (GE Healthcare, Pittsburgh, PA). The rat GluN2A LBD composed of S1 (Asp402 to Arg539) and S2 (Glu561 to Asn802) connected by a Gly-Thr dipeptide linker was expressed as a fusion protein to small ubiquitin-like modifer with a hexa-histidine tag at the N terminus in OrigamiB (DE3) cells in the same way as for GluN1 LBD. Protein purification was conducted using nickel-nitrilotriacetic acid chelating Sepharose chromatography, followed by digestion by ubiquitin ligase protease-1 to remove small ubiquitin-like modifier. The digested product was further purified by Q-Sepharose and SP-Sepharose ion exchange chromatography (GE Healthcare), as described previously (Jespersen et al., 2014).
Crystallography. Purified GluN1 and GluN2A LBD proteins were individually concentrated to 6 mg/ml, mixed at a 1:1 (w/w) ratio, and dialyzed against a buffer containing 10 mM HEPES-NaOH (pH 7.0), 100 mM NaCl, 1 mM L-glutamate, and 10 μM glycine at 4°C overnight. The GluN1-GluN2A LBD crystals were produced by vapor diffusion at 18°C by the hanging drop method. Specifically, the purified proteins and the reservoir solution containing 18% polyethylene glycol monomethyether 2000, 100 mM HEPES-NaOH (pH 7.0), and 75 mM NaCl were mixed at a 2:1 volume ratio and vapor diffused against the reservoir solution. Crystals appeared after 1 to 2 days. Crystals were then soaked against a buffer (100 mM HEPES, pH 7.0, 75 mM NaCl, 18% polyethylene glycol monomethyether 2000, and 1 mM glycine) supplemented with 0.2 mM NVP-AAM077 for 12 hours and with 0.4 mM NVP-AAM077 for another 5 hours. Finally, crystals were soaked against a buffer containing 1 mM NVP-AAM077 and 18% glycerol for a few seconds and immediately flash frozen by liquid nitrogen. X-ray diffraction data were collected at the National Synchrotron Light Source at Brookhaven National Laboratory and processed using HKL2000 (Otwinowski and Minor, 1997). All of the structures were determined by molecular replacement using three search probes: GluN1 LBD, GluN2B LBD domain 1 (Asn404-Glu530 and Gly760-His801) and GluN2A LBD domain 2 (Thr531-Thr759) from the structural coordinate of the GluN1-GluN2A ABD (Protein Data Bank code: 4NF8) (Jespersen et al., 2014). This heterodimeric subunit arrangement of our previously established method for effectively obtaining high-resolution structures of the GluN1-GluN2A LBD complexed to antagonists (Jespersen et al., 2014). Specifically, the crystals of the GluN1-GluN2A LBD proteins were grown in the presence of glycine and L-glutamate and soaked against the crystallization buffer (see Materials and Methods) containing glycine and NVP-AAM077. Thus, in the crystal structure, the coagonist glycine is bound to the GluN1 LBD and the antagonist NVP-AAM077 is bound to the GluN2A LBD. Our crystals gave rise to X-ray diffraction to the Bragg spacing of 1.6 Å (Table 1). The electron density was visible for 283 residues of the 289 residues derived from GluN1 and all of the 280 residues derived from GluN2A. The quality of the electron density was especially high at the GluN1-GluN2A subunit interface and at the NVP-AAM077 binding site, which allowed us to monitor the precise binding mode of NVP-AAM077 and the hydrogen bond network around the binding site.

Overall Architecture of NVP-AAM077-GluN1-GluN2A LBD. Both the GluN1 and GluN2A LBDs have the bi-lobed clamshell-like architecture composed of an upper domain (D1) and a lower domain (D2), as previously observed (Figs. 1 and 2) (Furukawa and Gouaux, 2003; Furukawa et al., 2005; Jespersen et al., 2014). The GluN1 and GluN2A LBD proteins crystallized as a heterodimer as in the previous case (Jespersen et al., 2014). This heterodimeric subunit arrangement is physiologic as the similar GluN1-GluN2A LBD heterodimer is observed in the structure of the intact heterotetrameric NMDA receptor ion channels (Karagas and Furukawa, 2014; Lee et al., 2014). The main locus for the NVP-AAM077 binding is the D1-D2 domain cleft in the GluN2A subunit where the neurotransmitter agonist, glutamate, also binds. Furthermore, the bromophenyl group of NVP-AAM077 extends toward the GluN1 subunit (Fig. 2B) and makes an
additional contact with a GluN1 residue, as described in more detail in the following sections.

Comparison with GluN1-GluN2A LBD Bound to Glutamate and Other Antagonists. Binding of NVP-AAM077 to the GluN1-GluN2A LBD results in the rigid-body opening of the D1-D2 bi-lobe in GluN2A compared with that bound to glutamate (Fig. 3). Stabilization of the open conformation upon binding of competitive antagonists is a feature previously observed in the structural studies of the GluN1-GluN2A LBD complexed to D-AP5 and (-)-PPDA (Jespersen et al., 2014). The degree of the bi-lobe opening is ∼16°, ∼21°, and ∼17° for D-AP5, PPDA, and NVP-AAM077, respectively (Fig. 3B; Materials and Methods). Thus, the extent of bi-lobe opening in the NVP-AAM077–bound GluN2A LBD is more similar to that of the D-AP5–bound GluN2A LBD than the PPDA-bound GluN2A LBD.

The opening and closing motions of the LBD bi-lobes are considered important for controlling ion channel gating in iGluRs. In NMDA receptors, the closure of the bi-lobes by agonist binding is suggested to move the LBD-TMD linkers of the GluN1 and GluN2A subunits apart to create a tension that is required to move the pore-forming M3 transmembrane helices (Kazi et al., 2014). Contrary to agonist binding, antagonist binding stabilizes the LBD bi-lobes in an open conformation, thereby keeping the distance between the LBD-TMD linkers of GluN1 and GluN2A sufficiently short. This prevents formation of tensions; thus, the TMD ion channels remain closed (Fig. 3). The residues GluN1-Ile664 and GluN2A-Val662 are located at the upper edge of the LBD-TMD linker and are subject to movement upon ligand binding (Fig. 3C). Upon binding of NVP-AAM077 to GluN2A, the distance between GluN1-Ile664 and GluN2A-Val662 shortens by 3.9 Å compared with that when glutamate is bound. Contrary to the GluN2A LBD, there is little or no change in the GluN1 subunit between the glutamate-bound and NVP-AAM077–bound GluN1-GluN2A LBD as represented by the low root-mean-square deviation distance (0.53 Å over 275 Ca positions). No apparent change was observed in the pattern of the GluN1-GluN2A subunit arrangement.

Fig. 2. Crystal structure of NVP-AAM077-GluN1-GluN2A LBD. (A) The crystal structure of the GluN1-GluN2A LBD complexed to glycine (Gly, light gray spheres) and NVP-AAM077 (yellow spheres) to GluN1 (green and orange) and GluN2A (purple and magenta), respectively, viewed from the side of the N-terminus (NT) and the C-terminus (CT). Spheres with asterisks are the Cαs of the Gly-Thr linker. Cysteine residues forming disulfide bonds are shown as sticks. The LBDs have a clamshell-like architecture composed of two bi-lobe domains, D1 (green in GluN1 and purple in GluN2A) and D2 (orange in GluN1 and magenta in GluN2A). (B) The same structure viewed from the top of the N termini. The bromophenyl group of NVP-AAM077 extends toward Helix I of the GluN1 subunit (dotted oval). Assigned letters for alpha helices are in accordance with Jespersen et al, 2014.

Fig. 3. Comparison of NVP-AAM077-GluN1-GluN2A LBD with glu-GluN1-GluN2A LBD. (A) Comparison of the GluN1-GluN2A heterodimers by superposition of the D1 of the GluN2A LBDs bound to glutamate (Protein Data Bank code: 4NF8) and NVP-AAM077. The color code for the NVP-AAM077-GluN1-GluN2A LBD is the same as in Fig. 1. The structure of the glutamate-bound GluN1-GluN2A LBD (glu-GluN1-GluN2A LBD) is in gray. The structure is viewed from the side of the N-terminus (NT) and the C-terminus (CT). Assigned letters for alpha helices are in accordance with Jespersen et al, 2014. (B) The same superposed structures viewed from a different angle. Only GluN2A LBD is shown here for clarity. The rotational angle to superpose Cα of D2 is calculated to be 17° around the pivotal axis shown as a black rod, which indicates that the NVP-AAM077–bound GluN2A LBD is 17° more open than the glutamate-bound GluN2A LBD. No significant change was observed in GluN1 LBDs between the two structures. (C) Schematic illustration to show that the domain opening in GluN2A reduces the distance between the LBD-TMD linkers of GluN1 and GluN2A subunits, thereby reducing the tension necessary for channel gating.
Novel Binding Mode of NVP-AAM077. The 1.6 Å resolution structure from the current crystallographic study provided an accurate map of the compound binding site (Fig. 4; Table 1). Substitution of glutamate with NVP-AAM077 was near complete as there is no visual evidence for the remaining glutamate density after extensive crystal soaking. Our previous studies revealed elements of the binding pocket important for recognition of D-AP5 and PPDA (Jespersen et al., 2014). The phosphono group in D-AP5 occupies the subsite, Site I, consisting of polar residues including GluN2A-Ser689, GluN2A-Thr690, and GluN2A-Tyr730, whereas the phenanthrene group in PPDA occupies the subsite, Site II, respectively, whereas no chemical group binds to Site II. Helices are labelled as in Fig. 2 and 3.
consisting of hydrophobic residues (Jespersen et al., 2014). Binding of NVP-AAM077 is mediated by a number of direct interactions, including polar interactions between the dioxoquinazolinyl group and residues from D1 (GluN2A-Ser511, -Thr513, and -Arg518), the phosphono group and residues from Site I, and the bromophenyl group and GluN1-Glu781 at Site III (Fig. 4C). The extension of the bromophenyl group toward the GluN1-GluN2A subunit interface and the direct interaction of the bromine atom with the carboxylate group of GluN1-Glu781 at Site III is a binding mode previously unobserved. The placement of the bromophenyl group at Site III displaces three water molecules present in the glutamate-GluN1-GluN2A LBD, which are involved in water-mediated polar interactions that tether GluN1-Glu781 and GluN2A-Ser689 or GluN2A-Thr690, thereby stabilizing the intersubunit interaction in addition to the opening of the GluN2A bi-lobe (Fig. 5). The distance between the bromine atom from NVP-AAM077 and the carboxylate group of GluN1-Glu781 is 3.5 Å, which slightly deviates from the ideal distance for bond formation (suggested to be 3.37 Å for a bromine–oxygen interaction) (Auffinger et al., 2004; Sirimulla et al., 2013). We speculate that a weak bromine–oxygen interaction exists between GluN1-Glu781 and a bromine atom or to remove the carboxylate group, respectively. We estimated K_i values by measuring the EC$_{50}$ of glutamate and IC$_{50}$ of NVP-AAM077 (Fig. 6; Supplemental Fig. 1). As predicted by the presence of the water-mediated hydrogen bond network in Site III, we saw changes in the glutamate potency when this network was broken by the GluN1-Glu781Asp and GluN1-Glu781Ala mutations, indicating the importance of the subunit interface in activity (Fig. 6A). Nevertheless, the K_i values for NVP-AAM077 in the GluN1-Glu781Asp and -Glu781Ala mutants were greater by ~13-fold and ninefold compared with the wild type, respectively (Fig. 6, B and C; Table 2). Thus, the mutagenesis result indicated that the interaction between the bromophenyl group in NVP-AAM077 and GluN1-Glu781 is critical for inhibition.

TABLE 2

<table>
<thead>
<tr>
<th>Potency of NVP-AAM077</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IC${50}$ values were calculated in the presence of 5 µM glutamate and 100 µM glycine for all of the mutants. K_i values were calculated by the Cheng–Prusoff equation: $K_i = K_a (1 + [L-glutamate]) / E{max} [L-glutamate]$</td>
<td></td>
</tr>
<tr>
<td>Glutamate EC$_{50}$ µM</td>
<td>NVP-AAM077 IC$_{50}$ nM</td>
</tr>
<tr>
<td>GluN1-GluN2A WT</td>
<td>3.81 ± 0.89</td>
</tr>
<tr>
<td>GluN1 E781D</td>
<td>8.55 ± 1.54</td>
</tr>
<tr>
<td>GluN1 E781A</td>
<td>20.85 ± 3.39</td>
</tr>
</tbody>
</table>
Discussion

The current high-resolution structural study revealed a novel antagonist-binding mode of NVP-AAM077. Specifically, the bromophenyl group of NVP-AAM077 extends out of the glutamate-binding pocket in GluN2A toward the GluN1-GluN2A subunit interface, and interacts with GluN1-Glu781. This marks the first example in which a competitive antagonist for NMDA receptors is recognized by residues from both GluN1 and GluN2 subunits.

The subunit interfaces in iGluRs are generally known to be critical for regulating activities of their oligomeric ion channels (Karakas et al., 2015; Regan et al., 2015). Some of the subunit interfaces in iGluRs also serve as binding sites for compounds for functional regulation. Such an example in NMDA receptors is an allosteric inhibitor, ifenprodil, which binds to the GluN1-GluN2B subunit interface at ATD (Karakas et al., 2011). Other examples are binding of negative allosteric modulator (NAM) and positive allosteric modulator compounds, which have been shown to occur at the GluN1-GluN2A LBD subunit interface by recent structural studies (Hackos et al., 2016; Yi et al., 2016). Even though the molecular mechanism is yet to be determined clearly, these studies indicated that stabilization of the subunit interface can upregulate or downregulate the ion channel activity. In AMPA receptors, the subunit interface of the LBD homodimer accommodates cyclothiazide and aniracetam, which alleviate desensitization and slow the speed of deactivation (Sun et al., 2002; Jin et al., 2005). The stabilization of the subunit interface by a mutation or artificial disulfide cross-link in AMPA receptors has also been shown to reduce desensitization, indicating that the strength of the intersubunit interaction in AMPA receptors controls the ion channel function (Stern-Bach et al., 1998; Weston et al., 2006). Of note is the fact that there is no positional overlap between binding sites of NVP-AAM077 and the NMDA receptor NAMs; thus, the inhibitory effect of NVP-AAM077 is most likely distinct from that of NAM even though a portion of NVP-AAM077 resides at the subunit interface.

Binding of NVP-AAM077 results in opening of the bi-lobe of the GluN2A LBD compared with the glutamate-bound GluN2A LBD. A similar pattern of rigid body domain movement was previously observed in the GluN1-GluN2A LBD bound to D-AP5 and PPDA (Jespersen et al., 2014). The recent structural study on the intact GluN1-GluN2B NMDA receptors solved in the presence of antagonists for both GluN1 and GluN2 subunits. This marks the first example in which a competitive antagonist for NMDA receptors is recognized by residues from both GluN1 and GluN2 subunits.

Second, our study is conducted in the absence conducted in the presence of the coagonist glycine bound to the GluN2A LBD compared with the glutamate-bound GluN2A LBD (Jespersen et al., 2014). Opening of the GluN2A LBD bi-lobe most likely relieves the tension in the LBD-TMD linker (Kazi et al., 2014), thereby preventing channel opening by interfering with a transduction of the physical force from the LBDs to the TMD.

NVP-AAM077 was originally pursued with enthusiasm due to its reported specificity toward the GluN2A-containing NMDA receptors. The extensive study to characterize the NVP-AAM077 pharmacology later showed that the degree of specificity is minimal (Frizelle et al., 2006). Our structural study shows that there is no apparent structural element that qualifies NVP-AAM077 as a GluN2A-specific antagonist, as residues from Site I and Site III are completely conserved. We expect Site III in the GluN1-GluN2B subunit interface to be almost identical to the GluN1-GluN2A subunit interface because the subunit arrangement between the GluN1-GluN2A LBD and the GluN1-GluN2B LBD is almost identical (Karakas and Furukawa, 2014). Thus, our study supports little or no subtype specificity of NVP-AAM077. Nevertheless, the new antagonist-binding mode highlighted by the newly observed Site III provides an opportunity to pursue novel compound designs.

Acknowledgments

The authors thank staff at the X25 beamline at the National Synchrotron Light Source in the Brookhaven National Laboratory. Erkan Karakas is thanked for help in crystallography. The structural coordinates related to this work have been deposited to the Protein Data Bank with the entry code 5U8C.

Authorship Contributions

Participated in research design: Romero-Hernandez, Furukawa.
Conducted experiments: Romero-Hernandez, Furukawa.
Performed data analysis: Romero-Hernandez, Furukawa.
Wrote or contributed to the writing of the manuscript: Romero-Hernandez, Furukawa.

References

Anderson YP, Allgeier H, Bischoff S, Lingeshoehl K, Moretti R, and Schmutz M (2002) 5-Phosphonomethylquinoxalinediones as competitive NMDA receptor an-
tagonts with a preference for the human 1A2A, rather than 1A2B receptor com-
Crystal Structure of NMDA Receptor Bound to NVP-AAM077

Address correspondence to: Dr. Hiro Furukawa, One Bungtown Road, Cold Spring Harbor, NY 11724. E-mail: furukawa@cshl.edu