
Devinder Sharma, Abdullah A. Turkistani, Wenjun Chang, Catherine Hu, Zhaoming Xu, and Thomas K. H. Chang

Faculty of Pharmaceutical Sciences, (D.S., A.A.T., C.H., T.K.H.C.), and Food, Nutrition, and Health Program, Faculty of Land and Food Systems (W.C., Z.X.), The University of British Columbia, Vancouver, British Columbia, Canada

Received September 19, 2016; accepted April 4, 2017

ABSTRACT

Small noncoding microRNAs act as post-transcriptional regulators of gene expression involved in diverse biologic functions. Pregnane X receptor (PXR, NR1I2), a member of the superfamily of nuclear receptors, is a transcription factor governing the transport and biotransformation of various drugs and other chemicals. In the present study, we identified a specific microRNA (miR) involved in regulating the expression and functionality of human PXR (hPXR). According to bioinformatics analysis employing three commonly used algorithms (TargetScan, miRanda, and DIANA-microT-CDS), miR-18a-5p was predicted to be the top candidate microRNA regulator of hPXR. Consequently, this microRNA was selected for detailed experimental investigation. As shown in cell-based dual-luciferase reporter gene assays, functional interaction occurred between miR-18a-5p and the microRNA recognition element of miR-18a-5p in the 3′-untranslated region of hPXR mRNA. Transfection of LS180 human colorectal adenocarcinoma cells with an miR-18a-5p mimic decreased hPXR mRNA and protein expression, whereas transfection of LS180 cells with an miR-18a-5p inhibitor increased hPXR mRNA and protein expression. The decrease in hPXR expression by the miR-18a-5p mimic was associated with a reduction in the extent of hPXR target gene (CYP3A4) induction by rifampin and rilpivirine. Treatment of untransfected LS180 cells with either of these hPXR agonists decreased endogenous expression of miR-18a-5p, and this preceded the onset of CYP3A4 induction. In conclusion, miR-18a-5p is a negative regulator of hPXR expression and the hPXR agonists rifampin and rilpivirine are chemical suppressors of miR-18a-5p expression.

Introduction

Consisting of approximately 17–25 nucleotides (Wang et al., 2013), microRNAs (miR) are small noncoding RNAs present not only intracellularly but also in various body fluids, including blood and urine (Beermann et al., 2016). By their action on modulating mRNA degradation or translational repression (Iwakawa and Tomari, 2015), microRNAs control the post-transcriptional regulation of genes participating in various physiologic and pathophysiologic processes, such as development and differentiation, metabolism, etiology of many cancers, and certain infections (Hammond, 2015). Emerging evidence suggests a potentially important role for microRNA in drug absorption, distribution, metabolism, and excretion, as indicated by findings that various drug-metabolizing enzymes, drug transporters, and associated nuclear receptors are targets of specific microRNAs (Dluzen and Lazarus, 2015; He et al., 2015).

This research was supported by the Natural Sciences and Engineering Research Council of Canada [Grant 2014-03734]. A.A.T. received a King Saud Scholarship, Ministry of Higher Education, Saudi Arabia. https://doi.org/10.1124/mol.116.107003.

This article has supplemental material available at molpharm.aspetjournals.org.

ABBREVIATIONS: 3′-UTR, 3′-untranslated region; CAR, constitutive androstane receptor; DMSO, dimethyl sulfoxide; HPRT, hypoxanthine phosphoribosyltransferase 1; hPXR, human pregnane X receptor; miR, microRNA; MEM, minimum essential medium; MRE, microRNA recognition element; PCR, polymerase chain reaction; PXR, pregnane X receptor; VDR, vitamin D receptor.
samples, the levels of hPXR mRNA expression did not correlate with the levels of hPXR protein expression, suggesting the involvement of a post-transcriptional mechanism(s) in hPXR expression (Takagi et al., 2008). As determined in a cell-based reporter gene assay, miR-148a was shown to regulate hPXR expression by binding to microRNA recognition elements (MRE) in the 3' -untranslated region (3'-UTR) of hPXR mRNA (Takagi et al., 2008). In a panel of 24 liver samples from the Chinese Han population, a lack of correlation was demonstrated between miR-148a levels and hPXR translational efficiency, as assessed by the ratio of hPXR protein/hPXR mRNA (Wei et al., 2013). Similarly, miR-148a levels did not correlate with hPXR mRNA or CYP3A4 mRNA levels in a cohort of 92 liver samples from Caucasians (Rieger et al., 2013). Other studies have implicated miR-30c-1-5p (Vachirayonstien and Yan, 2016), miR-34a (Ramamoorthy et al., 2012), and miR-449a (Ramamoorthy et al., 2012) in the regulation of hPXR. Overall, much remains to be investigated to identify individual microRNAs as determinants of the expression and functionality of hPXR.

Given that a single mRNA can be targeted by multiple microRNAs (Kim, 2005), the present study was performed to identify a novel microRNA as a regulator of hPXR. Therefore, we performed bioinformatics analysis to identify microRNAs with sequence complementary to the 3'-UTR of hPXR mRNA and conducted a series of cell-based assays to determine the effect of a select microRNA on the expression and functionality of hPXR. The experimental approaches involved in silico prediction, cell-based reporter gene assay, mimic and inhibitor of microRNAs to modulate microRNA expression, and hPXR and CYP3A4 (a hPXR target gene) expression assays. Our novel results indicate negative regulation of hPXR expression by microRNA-18a-5p and suppression of miR-18a-5p expression by the hPXR agonist rifampin and rifilipivine.

### Materials and Methods

#### Chemicals and Reagents. TaqMan microRNA Assay Kit for hsa-miR-18a-5p (miR-18a-5p) (cat. no. 4427975, assay ID no. 002422) and hsa-miR-16-5p (miR-16-5p) (cat. no. 4427975, assay ID no. 000391); mirVana microRNA Mimic Negative, Control #1 (mimic control) (cat. no. 4464058); hsa-miR-18a-5p mirVana microRNA Mimic (miR-18a-5p mimic) (cat. no. 4464066, assay ID no. MC12973); mirVana microRNA Inhibitor Negative, Control #1 (mimic control) (cat. no. 4464076); hsa-miR-18a-5p mirVana MicroRNA Inhibitor (miR-18a-5p inhibitor) (cat. no. 4464084, assay ID no. MH12973); hsa-miR-16-5p mirVana MicroRNA Mimic (miR-16-5p mimic) (cat. no. 4464066, assay ID no. MC10339); TaqMan MicroRNA Reverse Transcription Kit (cat. no. 4366596); Qubit RNA HS Assay Kit (cat. no. Q32855); TRizol Reagent; Supersignal West Femto Maximum Sensitivity Substrate; PicoGreen Double-Stranded DNA Quantification Kit; Lipofectamine RNAiMAX; Lipofectamine 2000; and UltraPure distilled water were purchased from Life Technologies/Thermo Fisher Scientific (Burlington, ON, Canada). RNAiso Plus was purchased from TaKaRa Bio (Shiga, Japan). RIPA Lysis Buffer System and PicoGreen Double-Stranded DNA Quantification Kit; Lipofectamine RNAiMAX; Lipofectamine 2000; and UltraPure distilled water were purchased from Life Technologies/Thermo Fisher Scientific (Burlington, ON, Canada).

#### Transfection and Luciferase Reporter Gene Assays. A microRNA mimic is a small, chemically modified double-stranded RNA used experimentally to provide overexpression of a microRNA of interest (Schaeffer et al., 2012), whereas a microRNA inhibitor is a small, chemically modified single-stranded RNA molecule designed to bind specifically to and decrease the expression of an endogenous microRNA of interest (Laganà et al., 2014). The effects of an miR-18a-5p mimic and an miR-18a-5p inhibitor on the functionality of the 3'-UTR of hPXR mRNA were investigated in transiently transfected LS180 cells, which were seeded in 24-well plates (Biolite, cat. no. 930186; Thermo Fisher Scientific, Burlington, ON, Canada) at a density of 100,000 cells per well in a volume of 0.5 mL of the culture medium described above. At 24 hours post-plating, cells were transfected with 50 μL of a master transfection mix containing Lipofectamine 2000 (1.5 μL/well), serum-free Opti-MEM (44.5 μL/well), pGL4.74[hRluc/TK] internal control (10 ng/well), a construct containing the pGL3-promoter backbone (200 ng/well), and either miR-18a-5p mimic (50 nM) or miR-18a-5p inhibitor (50 nM) for 48 hours, according to the manufacturer’s protocol. Control cells were transfected with the same concentration (50 nM) of a mimic control or an inhibitor control. The pGL3-promoter-constructing construct was: 1) pGL3-promoter-pHRX-MRE18a-5p, 2) pGL3-promoter-pHRX-MRE18a-5p-REV, 3) pGL3-promoter-complementary-18a-5p, or 4) the control empty vector (pGL3-promoter). Firefly luciferase and Renilla reniformis (internal control) luciferase activities were quantified and normalized (Sharma et al., 2013).

#### Transfection and Drug Treatment of LS180 Cells for Determination of microRNA and mRNA Expression. LS180 cells were seeded in 100-mm culture dishes (cat. no. 430167) for a density of 1 × 10⁶ cells per dish. At 24 hours post-plating, cells were transfected with an miR-18a-5p mimic or an miR-18a-5p inhibitor (the final concentration and duration as specified in each figure legend) in a master transfection mix (1000 μL containing Lipofectamine RNAiMAX transfection reagent (15 μL) and serum-free Opti-MEM). In specific experiments, transfected LS180 cells were treated with rifampin (10 μM), rifilipivine (5 μM), or dimethyl sulfoxide (DMSO; 0.1% v/v; vehicle control) for 24 hours. Subsequently, cell

### Plasmids. The internal control Renilla reniformis luciferase pGL4.74[hRluc/TK] plasmid and the pGL3-promoter vector were purchased from Promega. The portion of hPXR mRNA from +1041 to +1064 upstream of the coding sequence was identified as an miR-18a-5p MRE using www.microRNA.org, an online bioinformatics tool (Betel et al., 2008). The predicted MRE of miR-18a-5p (three copies of 5'-GGT-ACC-GAA-GAA-CCA-TTT-TTA-GAC-ACC-CCT-CCT-GTA-GTA-GAA-GAA-CGA-GGA-GCA-GGAGGG-3') in the 3'-UTR of hPXR mRNA was amplified and cloned into the pGL3-promoter vector using Kpn1 and Xho1 restriction sites downstream of the luciferase gene. This construct was named pGL3-promoter-pHRX-MRE18a-5p-REV. Three copies of the complementary sequence of miR-18a-5p were added and cloned into the pGL3-promoter vector. This construct was named pGL3-promoter-complementary-18a-5p. Each of these constructs was synthesized at Genscript (Piscataway, NJ).

#### Cell Culture. LS180 human colorectal adenocarcinoma cells (CL-187) (American Type Culture Collection, Manassas, VA) were cultured as described previously (Yeung et al., 2008), with the exception that the minimum essential medium (MEM)/Earle’s balanced salt solution was the culture medium and MEM/nonessential amino acid (1 ×) was added. All cell-based assays were conducted in supplemented culture medium containing 10% v/v charcoal-stripped fetal bovine serum.

### MicroRNA-18a-5p and Pregnane X Receptor 49

MicroRNA-18a-5p and Pregnane X Receptor 49

MicroRNA-18a-5p and Pregnane X Receptor 49
samples were processed for determination of microRNA and mRNA expression as described below.

**Isolation and Quantitation of Total RNA.** Total RNA was isolated using TRIzol and quantified using the Qubit RNA HS Assay Kit. A working solution of Qubit RNA HS Reagent (1:200 dilution) was prepared in Qubit RNA HS Buffer. Samples were prepared by adding 1 µl of total RNA to 199 µl of a working solution of Qubit RNA HS Reagent. After brief mixing, samples were incubated at room temperature for 2 minutes. Total RNA was quantified in a Qubit 2.0 fluorometer at an excitation maximum wavelength of 644 nm (bandwidth, 45 nm) and an emission maximum wavelength of 673 nm (bandwidth, 55 nm).

**Determination of miR-18a-5p and miR-16-5p Expression.**

Total RNA was reverse transcribed using primers specific for miR-18a-5p or miR-16-5p (Taqlman microRNA Assay Kit, assay ID no. 002422 for miR-18a-5p and assay ID no. 000391 for miR-16-5p) and reagents supplied in the Taqman mRNA Reverse Transcription Kit. Briefly, each 15 µl of a reverse transcription reaction contained 5 µl total RNA (100 ng total RNA), 3 µl of 5× reverse transcription stem-loop primers specific for miR-18a-5p or miR-16-5p, and 7 µl of reverse transcription master mix. The reverse transcription master mix contained 1 µl (5 units) of MultiScriber Reverse Transcriptase, 1.5 µl of 10× reverse transcription buffer, 0.19 µl of RNase inhibitor (3.8 units), 0.15 µl of dNTP (1 mM final concentration), and 4.16 µl of UltraPure distilled water. Reverse transcription (RT) was conducted at 16°C for 30 minutes followed by 42°C for 30 minutes, 85°C for 5 minutes, and 4°C for 10 minutes. Polymerase chain reaction (PCR) was performed in a StepOnePlus Real-Time PCR System (Applied Biosystems, Burlington, ON, Canada). Each 20 µl of a PCR reaction contained 10 µl of TaqProbe 2× qPCR MasterMix-ROX, 1 µl of 20× PCR primers specific for miR-18a-5p or miR-16-5p (TaqMan microRNA Assay Kit, assay ID no. 002422 for miR-18a-5p and assay ID no. 000391 for miR-16-5p), 1 µl of the RT product, and 8 µl of UltraPure distilled water. The PCR cycling condition was 95°C for 10 minutes followed by 40 cycles of 95°C for 15 seconds and 60°C for 60 seconds. The level of miR-18a-5p was quantified and normalized to that of miR-16-5p.

**Determination of hPXR and CYP3A4 mRNA Expression.**

Total RNA was reverse transcribed and total cdNA concentrations were quantified (Sharma et al., 2013). hPXR cDNA, CYP3A4 cDNA, hypoxanthine phosphoribosyltransferase 1 (HPRT) cDNA, and cyclophilin cDNA were amplified using gene-specific primers (Lau et al., 2015) in a StepOnePlus Real-Time PCR System (Applied Biosystems, Burlington, ON, Canada). Each 20 µl of a PCR reaction contained 10 µl of the RT product, 1 µl of 2× qPCR MasterMix-ROX, 5 µl of gene-specific primers (0.3 µM final concentration), and 5 µl of the RT product (i.e., 10 ng total cDNA for the amplification of CYP3A4 cDNA and hPXR cDNA, 5 ng total cDNA for the amplification of HPRT cDNA, and 0.5 ng total cDNA for the amplification of cyclophilin cDNA). The PCR cycling condition was 95°C for 10 minutes followed by 40 cycles of 95°C for 15 seconds, 55°C for 10 seconds, and 60°C for 50 seconds. The levels of hPXR and CYP3A4 mRNA were quantified and normalized to HPRT mRNA level (Lau et al., 2010; Sharma et al., 2015).

**Immunoblot Analysis of hPXR Protein Expression.** Whole-cell lysate was prepared using the RIPA Lysis Buffer System. Total protein concentration in cell lysate was quantified using the DC Protein Assay Kit (Bio-Rad Laboratories). Whole-cell lysate (75 µg total cellular protein) was separated on 12% SDS-PAGE and transferred onto an Immobilon-P polyvinylidene fluoride membrane (EMD Millipore, Etobicoke, ON, Canada). After blocking in 5% milk, the membrane was incubated overnight at 4°C with anti-hPXR H-11 monoclonal antibody (1:500). Subsequently, the membrane was washed and incubated at room temperature with a horseradish peroxidase-conjugated anti-mouse antibody (1:5000). Proteins were visualized using SuperSignal West Femto Maximum Sensitivity Substrate (600 µl) and images of the protein bands were recorded (FluorChem 8800 Gel Box Imager; Alpha Innotech, San Leandro, CA). Densitometric analysis of each protein band was performed using the NIH ImageJ software (National Institutes of Health, Bethesda, MD). β-Actin (OriGene Technologies, Rockville, MD) was used as a loading control.

**Determination of CYP3A4 Activity.** CYP3A4 activity was measured using the P450-Glo CYP3A4 ( Luciferin-IPA) Assay Kit (Promega). Briefly, LS180 cells were plated in 24-well plates at a density of 150,000 cells per well using supplemented MEM/Earle's balanced salt solution culture medium as indicated above. At 24 hours post-plating, cells were transfected with 50 nM mimic control or an miR-18a-5p mimic using Lipofectamine RNAiMAX transfection reagent. At 48 hours post-transfection, the culture medium was replaced with 0.5 ml of fresh supplemented culture medium containing a CYP3A4 inducer (10 µM rifampin or 5 µM riflpirivine) or DMSO (0.1% v/v; vehicle control) and incubated for 24 hours. At the end of the treatment period, culture medium in each well was replaced with 0.3 ml of medium containing 3 µM CYP3A4 Luciferin-IPA substrate, and cells were incubated at 37°C for 1 hour. Subsequently, 50 µl of the incubation mixture was mixed with 50 µl of the Luciferin Detection Reagent. Reaction mixtures were incubated at room temperature for 20 minutes. Luminescence was measured in a GloMax 96 microplate luminometer (Promega). Background luminescence was measured in wells devoid of cells but containing the Luciferin-IPA substrate. Results are expressed as fold-increase over the vehicle-treated control group.

**Data Analysis.** In experiments where there were two groups, data were analyzed by the two-tailed, independent Student’s t test. In experiments where there were two factors, data were analyzed by two-way analysis of variance and, where appropriate, followed by the Student-Newman-Keuls multiple comparison test (SigmaPlot 11.0; Systat Software, Inc., San Jose, CA). The level of statistical significance was set at a priori at P<0.05.

**Results**

**Prediction of miR-18a-5p MRE in the 3′-UTR of hPXR mRNA.** As shown in Supplemental Table S1, miR-18a-5p was the top candidate microRNA regulator of hPXR, as predicted by three of the most commonly used bioinformatics tools in microRNA analysis: TargetScan (Whitehead Institute for Biomedical Research, Cambridge, MA; http://www.targetscan.org), miRanda (http://www.microrna.org), and DIANA-microT-CDS (OMIC Tools, Le-Petit-Quevilly, France; https://omictools.com) (Riffo-Campos et al., 2016). The predicted MRE of miR-18a-5p in the 3′-UTR of hPXR mRNA ranged from position 1041 to 1064 upstream of the coding sequence (Fig. 1). This information about the MRE was used in designing various reporter plasmids to investigate the potential involvement of miR-18a-5p in regulation of the 3′-UTR of hPXR mRNA.

**Fig. 1.** Schematic representation of the sequence complementarity between miR-18a-5p and the predicted MRE on the 3′-UTR of hPXR mRNA. At the 5′ end, number 1840 refers to the start of the coding sequence that continues to position 3144, with a stop codon at 3142.
The miR-18a-5p MicroRNA Targeted the 3'-UTR of hPXR mRNA in LS180 Cells. Plasmids were cloned into the pGL3-promoter vector downstream of the luciferase gene (Fig. 2A). As shown in Fig. 2B, the luciferase activity was less in cultured LS180 cells cotransfected with an miR-18a-5p mimic and pGL3-promoter-hPXR-MRE-18a-5p than the luciferase activity in cells cotransfected with an miR-18-5p mimic and pGL3-promoter (empty vector control) or in cells cotransfected with a mimic control and pGL3-promoter-hPXR-MRE-18a-5p (construct containing three copies of miR-18a-5p MRE). There was a further decrease in luciferase activity in cells cotransfected with an miR-18a-5p mimic and pGL3-promoter-complementary-18a-5p (construct with perfect matching complement of miR-18a-5p). As expected, the miR-18a-5p mimic did not influence the luciferase activity in cells transfected with pGL3-promoter-hPXR-MRE-18a-5p-REV (construct containing three copies of the complementary sequence of miR-18a-5p MRE). As shown in Fig. 2C, the luciferase activity was greater in cultured LS180 cells cotransfected with an miR-18a-5p inhibitor and pGL3-promoter-hPXR-MRE-18a-5p than the luciferase activity in cells cotransfected with an miR-18-5p mimic and pGL3-promoter-hPXR-MRE-18a-5p. There was a further increase in luciferase activity in cells cotransfected with an miR-18a-5p mimic and pGL3-promoter-complementary-18a-5p. As expected, the miR-18a-5p inhibitor did not influence the luciferase activity in cells transfected with pGL3-promoter-hPXR-MRE-18a-5p-REV. Collectively, the results from the complementary experiments involving miR-18-5p mimic (Fig. 2B) and miR-18a-5p inhibitor (Fig. 2C) showed that the miR-18a-5p MRE in the 3'-UTR of hPXR mRNA was functional.

Expression Profile of miR-18a-5p in LS180 Cells Transfected with a Mimic or Inhibitor of miR-18a-5p. Initial experiments confirmed that transfection reagent, mimic control, and treatment with either rilpivirine or rifampin did not alter miR-16-5p level (data not shown). Therefore, the level of miR-18a-5p was normalized to that of miR-16-5p. Transfection of LS180 cells with an miR-18a-5p mimic (25 nM) led to an increase in miR-18a-5p expression, as assessed 24 hours post-transfection. Prolonging the duration of transfection to 48 hours resulted in a further increase in miR-18a-5p expression. The level of miR-18a-5p was not altered by transfection with either rilpivirine or rifampin.
48 and 72 hours decreased the measured level of miR-18a-5p, in comparison with the measured miR-18a-5p level at 24 hours (Fig. 3A). As shown in Fig. 3B, the increase in miR-18a-5p expression was comparable in cells transfected with either 25 or 50 nM miR-18a-5p mimic for 48 hours (Fig. 3B). By comparison, transfection of LS180 cells with the miR-18a-5p inhibitor (25 nM) decreased the measured level of miR-18a-5p at 24, 48, and 72 hours post-transfection (Fig. 3C). Similar decreases in the level of miR-18a-5p were obtained with either 25 or 50 nM miR-18a-5p inhibitor (Fig. 3D). On the basis of these results, the 48-hour transfection period and 50 nM concentration of the miR-18a-5p mimic or inhibitor were used in subsequent experiments.

**An miR-18a-5p Mimic and an miR-18a-5p Inhibitor Reciprocally Modulated hPXR Expression in LS180 Cells.** The effects of an miR-18a-5p mimic and an miR-18a-5p inhibitor on hPXR expression were investigated. Transfecting LS180 cells with an miR-18a-5p mimic at a concentration (25 or 50 nM) that increased the level of miR-18a-5p (Fig. 3, A and B) was associated with a decrease in the level of hPXR mRNA (Fig. 4A) and protein (Fig. 4B). Conversely, transfecting LS180 cells with an miR-18a-5p inhibitor at a concentration (25 or 50 nM) that decreased the level of miR-18a (Fig. 3, C and D) was associated with an increase in hPXR mRNA (Fig. 4C) and protein (Fig. 4D) levels. Control immunoblot analysis indicated that the anti-hPXR antibody reacted with hPXR protein, but it did not crossreact with human CAR or VDR protein (data not shown). Overall, miR-18a-5p modulated hPXR expression.

**hPXR Agonists Decreased Endogenous Expression of miR-18a-5p in LS180 Cells.** To investigate whether treatment with a hPXR agonist modulated endogenous expression of miR-18a-5p, a time course experiment was performed in untransfected LS180 cells treated with rifampin (10 μM), rilpivirine (5 μM), or DMSO (0.1% v/v; vehicle control) for 3, 6, 12, or 24 hours. As shown in Fig. 5A, rifampin decreased miR-18a-5p expression as early as 3 hours post-treatment and this decrease continued until 6 hours post-treatment. The level of miR-18a-5p returned to the basal level at 12 hours post-treatment. By comparison, rilpivirine started to decrease miR-18a-5p level at 3 hours post-treatment, and levels returned to basal by 24 hours. The vehicle control (0.1% v/v DMSO) did not change the level of miR-18a-5p over the 24-hour period. In the same samples, rifampin and rilpivirine did not modulate hPXR mRNA level over the 24-hour time period (Fig. 5B). Control analysis indicated an increase in CYP3A4 mRNA level by rifampin and rilpivirine. However, a novel aspect of our data are the differential temporal profiles. As shown in Fig. 5C, the increase in CYP3A4 mRNA level in LS180 cells by rifampin occurred at 12 and 24 hours post-treatment, whereas it was not apparent until after 24 hours of rilpivirine treatment.

The same conclusion was drawn regardless of whether the PXR mRNA and CYP3A4 mRNA levels were normalized to those of HPRT mRNA (Fig. 5, B and C) or cyclophilin mRNA (data not shown).

**Overexpression of miR-18a-5p Compromised Inducibility of a hPXR Target Gene (CYP3A4) in LS180 Cells Treated with a hPXR Agonist.** The effect of miR-18a-5p overexpression on hPXR functionality was investigated in LS180 cells transfected with the miR-18a-5p mimic and treated with a hPXR agonist, rifampin or rilpivirine. Compared with cells transfected with a mimic control and treated with rifampin or rilpivirine, the miR-18a-5p mimic attenuated the extent of CYP3A4 induction by either of these drugs, as shown by the reduced level of CYP3A4 mRNA (Fig. 6A) and CYP3A4 catalytic activity (Fig. 6B). The same conclusion was drawn regardless of whether the CYP3A4 mRNA level was normalized to that of HPRT mRNA (Fig. 6A) or cyclophilin mRNA (data not shown).
Discussion

The miR-18a-5p microRNA and the other members in the miR-17/92 cluster (miR-17-5p, miR-17-3p, miR-19a, miR-19b, miR-20a, and miR-92a) are oncogenes shown to be over-expressed in various types of human cancer (Mogilyansky and Rigoutsos, 2013). In a previous bioinformatics analysis using three algorithms (TargetScan, microcosm, and miRDB) and a microRNA ranking tool known as MIRNA-DISTILLER (Rieger et al., 2011; Rigoutsos, 2013), hPXR was predicted to be a target of miR-18a-5p (Rieger et al., 2013), consistent with the prediction in our study (Supplemental Table S1). However, prior to our current study, there were no published experimental data indicating whether miR-18a-5p had any functional interaction with key regulators (e.g., hPXR) of genes involved in drug transport or biotransformation.

A major conclusion of our study is that miR-18a-5p is a post-transcriptional regulator of hPXR. This conclusion is supported by: 1) bioinformatics analysis of the 3′-UTR of hPXR mRNA identified a MRE for miR-18a-5p; 2) miR-18a-5p MRE in the 3′-UTR of hPXR mRNA was functional in a cell-based reporter gene assay; and 3) modulation of miR-18a-5p expression by a mimic or inhibitor altered hPXR expression in LS180 cells. It is possible that miR-18a-5p crosstalks with glucocorticoid receptor in hPXR regulation by miR-18a-5p in LS180 cells, suggesting a lack of a direct effect of miR-18a-5p on CYP3A4 basal expression. It should be noted that miR-18a-5p has sequence complementarity in the 3′-UTR of hPXR mRNA but not in the 3′-UTR of CYP3A4 mRNA. Furthermore, basal CYP3A4 expression is regulated by CCAAT enhancer-binding protein a (C/EBPα) (Rodriguez-Antona et al., 2003; Bombail et al., 2004), hepatocyte nuclear factor-3 (Rodriguez-Antona et al., 2003), and hepatocyte nuclear factor-4a (Tegude et al., 2007). PXR does not appear to play a role in the basal expression of CYP3A4 because little or no difference exists in hepatic CYP3A mRNA level between untreated wild-type mice and untreated PXR knockout mice (Xie et al., 2000; Ma et al., 2007; Helsley et al., 2013). Overall, miR-18a-5p compromised the functionality of hPXR in LS180 cells by attenuating the inducibility of a hPXR target gene (CYP3A4).

Regulation of hPXR expression by miR-18a-5p is associated with functional consequences, as demonstrated by the finding that overexpression of miR-18a by LS180 cells transfected with a mimic of miR-18a-5p compromised the inducibility of a hPXR target gene (CYP3A4). Consistent with this conclusion, transfection of LS180 cells with an miR-18a-5p mimic attenuated the increase in CYP3A4 mRNA expression and CYP3A4 catalytic activity by rifampin and rifilvivirine, which are hPXR agonists and CYP3A4 inducers (Bertilsson et al., 1998; Lehmann et al., 1998; Sharma et al., 2013). In contrast, transfection with a mimic of miR-18a-5p did not alter CYP3A4 expression in vehicle-treated control LS180 cells, suggesting a lack of a direct effect of miR-18a-5p on CYP3A4 basal expression. It should be noted that miR-18a-5p has sequence complementarity in the 3′-UTR of hPXR mRNA but not in the 3′-UTR of CYP3A4 mRNA. Furthermore, basal CYP3A4 expression is regulated by CCAAT enhancer-binding protein α (C/EBPα) (Rodriguez-Antona et al., 2003; Bombail et al., 2004), hepatocyte nuclear factor-3 (Rodriguez-Antona et al., 2003), and hepatocyte nuclear factor-4a (Tegude et al., 2007). PXR does not appear to play a role in the basal expression of CYP3A4 because little or no difference exists in hepatic CYP3A mRNA level between untreated wild-type mice and untreated PXR knockout mice (Xie et al., 2000; Ma et al., 2007; Helsley et al., 2013). Overall, miR-18a-5p compromised the functionality of hPXR in LS180 cells by attenuating the inducibility of a hPXR target gene (CYP3A4).

As shown in the present study, transfection of LS180 cells with an miR-18a-5p mimic resulted in ~25-fold increase in miR-18a-5p level and this was accompanied by ~30% decrease in hPXR mRNA level. By comparison, a 25% decrease in miR-18a-5p level in LS180 cells by an miR-18a-5p inhibitor was sufficient to elicit a 55% increase in hPXR mRNA level. Such an apparent difference between a microRNA mimic and a
microRNA inhibitor is consistent with previous observations. For example, transfection of HepaRG cells with an miR-25-3p mimic increased miR-25-3p levels by almost 175-fold but decreased CYP2B6 mRNA level by only ~40%, whereas transfection with an miR-25-3p inhibitor decreased miR-25-3p level ~75% and this led to a ~25% increase in CYP2B6 mRNA level (Jin et al., 2016). The low efficiency at which a microRNA mimic decreases the expression of a target has been shown for other combinations of microRNA mimic and target, including miR-148a mimic and hPXR (Takagi et al., 2008), miR-103 mimic and CYP2C8 (Zhang et al., 2012), and miR-130-3p mimic and sphingosine 1-phosphate receptor 2

**Fig. 5.** Effect of rifampin and rilpivirine on endogenous expression of miR-18a-5p, hPXR mRNA, and CYP3A4 mRNA in untransfected LS180 cells. At 48 hours post-plating, LS180 cells were untreated or treated with DMSO (0.1% v/v; control), rifampin (RIF; 10 μM), or rilpivirine (RPV; 5 μM) for 3, 6, 12, or 24 hours. At the end of treatment period, cells were lysed and total RNA was isolated, and microRNA and mRNA levels were quantified by real-time PCR as described under Materials and Methods. The level of miR-18a-5p (A) was normalized to the level of miR-16-5p, whereas the level of PXR mRNA (B) and the level of CYP3A4 mRNA (C) were normalized to the level of HPRT mRNA. Data are expressed as mean ± S.E.M. for three independent experiments performed in triplicate. *Significantly different from the untreated group and the corresponding DMSO-treated control group (P < 0.05).

**Fig. 6.** Inducibility of a hPXR target gene (CYP3A4) in LS180 cells transfected with an miR-18a-5p mimic and treated with rifampin or rilpivirine. At 24 hours post-plating, LS180 cells were transfected with 50 nM of an miR-18a-5p mimic or a mimic control for 48 hours, and subsequently treated with DMSO (0.1% v/v), rifampin (RIF; 10 μM), or rilpivirine (RPV; 5 μM) for 24 hours. CYP3A4 mRNA (A) and CYP3A4 catalytic activity (B) were determined as described under Materials and Methods. Data are expressed as mean ± S.E.M. for three independent experiments performed in triplicate. *Significantly different from the corresponding mimic control group (P < 0.05).
receptors, and their target genes. For example, the downregulation of miR-122, activation of CAR, and induction of CAR target gene (CYP2B) by phenobarbital are associated with activation of AMP-activated protein kinase by the drug (Shizu et al., 2012). Therefore, studies will be required in the future to provide an understanding of how miR-18a-5p regulates the expression and functionality of hPXR.

In summary, 1) miR-18a-5p was a post-transcriptional regulator of hPXR, 2) overexpression of miR-18a-5p compromised the functionality of hPXR by attenuating the inducibility of a hPXR target gene (CYP3A4) by rifampin and rifilpine, and 3) rifampin and rifilpine decreased the endogenous expression of miR-18a-5p, as determined in the present study performed in LS180 human colon adenocarcinoma cells. Given that PXR is a master regulator of various genes function in drug transports and biotransformation (Chai et al., 2013), our finding on the interaction between miR-18a-5p and hPXR provides additional insight into the molecular determinants of the interindividual variability in pharmacokinetics and pharmacodynamics. Suppression of miR-18a-5p expression by rifampin and rifilpine may have implications with respect to the proposed utility of miR-18a-5p as a diagnostic biomarker for various types of cancers (Komatsu et al., 2014), because of the potential interference of drug intake on miR-18a-5p expression. Finally, suppression of miR-18a-5p has been associated with inhibition of cell invasion and promote apoptosis (Zhu et al., 2015). Therefore, drug-mediated suppression of miR-18a-5p may be a target of interest in future investigations of anticancer strategies.

Acknowledgments

The authors thank Dr. Guixiang Yang for her guidance in designing the various constructs.

Authorship Contributions

Participated in research design: Sharma, Xu, T. K. H. Chang.
Conducted experiments: Sharma, Turkistani, W. Chang.
Contributed new reagents or analytic tools: Hu.
Performed data analysis: Sharma.
Wrote or contributed to the writing of the manuscript: Sharma, Xu, T. K. H. Chang.

References


Rieger JK, Klein K, Winter S, and Zanger UM (2013) Expression variability of ab-
Ramamoorthy A, Li L, Gaedigk A, Bradford LD, Benson EA, Flockhart DA,
Mogilyansky E and Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive up-
Fromm B, Billipp T, Peck LE, Johanssen M, Tarver JE, King BL, Newcomb JM,
Haslam IS, Jones K, Coleman T, and Simmons NL (2008) Rifampin and digoxin
the absorption, distribution, metabolism and excretion of drugs. Br J Pharmaco-
mediates dyslipidemia induced by the HIV protease inhibitor amprenavir in mice. Mol Pharmacol 83:1190–1199.
Iwaki TO and Tomari Y (2015) The functions of microRNAs: mRNA decay and
investigating drug-drug has-miR-25-3p suppresses the expression and drug induction of
mediates dyslipidemia induced by the HIV protease inhibitor amprenavir in mice. Mol Pharmacol 83:1190–1199.
Iwaki TO and Tomari Y (2015) The functions of microRNAs: mRNA decay and
investigating drug-drug has-miR-25-3p suppresses the expression and drug induction of
mediates dyslipidemia induced by the HIV protease inhibitor amprenavir in mice. Mol Pharmacol 83:1190–1199.
Iwaki TO and Tomari Y (2015) The functions of microRNAs: mRNA decay and
investigating drug-drug has-miR-25-3p suppresses the expression and drug induction of
mediates dyslipidemia induced by the HIV protease inhibitor amprenavir in mice. Mol Pharmacol 83:1190–1199.
Iwaki TO and Tomari Y (2015) The functions of microRNAs: mRNA decay and
investigating drug-drug has-miR-25-3p suppresses the expression and drug induction of
mediates dyslipidemia induced by the HIV protease inhibitor amprenavir in mice. Mol Pharmacol 83:1190–1199.
Iwaki TO and Tomari Y (2015) The functions of microRNAs: mRNA decay and
investigating drug-drug has-miR-25-3p suppresses the expression and drug induction of
mediates dyslipidemia induced by the HIV protease inhibitor amprenavir in mice. Mol Pharmacol 83:1190–1199.
Iwaki TO and Tomari Y (2015) The functions of microRNAs: mRNA decay and
investigating drug-drug has-miR-25-3p suppresses the expression and drug induction of