A Novel Selective Inverse Agonist of the CB₂ Receptor as a Radiolabeled Tool Compound for Kinetic Binding Studies

Andrea Martella, Huub Sijben, Arne C. Rufer, Uwe Grether, Juergen Fingerle, Christoph Ullmer, Thomas Hartung, Adriaan P. IJzerman, Mario van der Stelt, and Laura H. Heitman

Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (A.M., H.S., A.P.I., L.H.H.), and Department of Molecular Physiology, Leiden Institute of Chemistry (A.M., M.S.), Leiden University, Leiden, The Netherlands; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (A.M., A.C.R., U.G., C.U., T.H.); and Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (J.F.)

Received February 16, 2017; accepted July 21, 2017

ABSTRACT

The endocannabinoid system, and in particular the cannabinoid type 2 receptor (CB₂R), raised the interest of many medicinal chemistry programs for its therapeutic relevance in several (patho-)physiologic processes. However, the physico-chemical properties of tool compounds for CB₂R (e.g., the radioligand [³H]CP55,940) are not optimal, despite the research efforts in developing effective drugs to target this system. At the same time, the importance of drug-target binding kinetics is growing since the kinetic binding profile of a ligand may provide important insights for the resulting in vivo efficacy. In this context we synthesized and characterized [³H]RO6957022, a highly selective CB₂R inverse agonist, as a radiolabeled tool compound. In equilibrium and kinetic binding experiments, [³H]RO6957022 showed high affinity for human CB₂R with fast association (k_on) and moderate dissociation (k_off) kinetics.

Introduction

Historically, the plant Cannabis sativa and its preparations have been exploited for millennia, finding its use in medical and recreational applications (Mechoulam et al., 2014). Since the structural characterization of Δ⁹-tetrahydrocannabinol, the main psychoactive constituent of cannabis, in 1964 (Gaoni and Mechoulam, 1964), two classes of cannabinoid receptors have been identified as targets of Δ⁹-tetrahydrocannabinol, namely, the cannabinoid type 1 receptor (Devane et al., 1988) and the cannabinoid type 2 receptor (CB₂R) (Munro et al., 1993). The presence of these G protein-coupled receptors implied the existence of endogenous ligands, which were identified as signaling lipids derived from arachidonic acid, i.e., anandamide (N-arachidonoyl ethanolamine (AEA)) and 2-arachidonoylglycerol (2-AG). These bioactive lipids were identified as signaling lipids derived from arachidonic acid, and their mechanism of action and the importance of association and dissociation rates in the determination of CB₂R affinity. Altogether, this study shows that the use of a novel tool compound, i.e., [³H]RO6957022, can support the development of novel ligands with a repertoire of kinetic binding profiles for CB₂R.

To demonstrate the robustness of [³H]RO6957022 binding, affinity studies were carried out for a wide range of CB₂R reference ligands, spanning the range of full, partial, and inverse agonists. Finally, we used [³H]RO6957022 to study the kinetic binding profiles (i.e., k_on and k_off values) of selected synthetic and endogenous (i.e., 2-arachidonoylglycerol, anandamide, and noladin ether) CB₂R ligands by competition association experiments. All tested ligands, and in particular the endocannabinoids, displayed distinct kinetic profiles, shedding more light on their mechanism of action and the importance of association rates in the determination of CB₂R affinity. Recently, complete enzymatic machinery was found to control the levels of these endocannabinoids, which are synthesized and degraded in an on-demand fashion after various types of stimuli (Ligresti et al., 2016).

The two cannabinoid receptors are expressed in different cellular systems throughout the human body and are involved in various physiologic and pathologic processes. Cannabinoid receptor type 1 is mainly expressed in the central nervous system and to a lesser extent in peripheral tissue, whereas the CB₂R is thought to be primarily expressed in immune cells (e.g., B and T lymphocytes, monocytes, and macrophages) (Galiègue et al., 1995; Turrett et al., 2016).

Since its discovery, CB₂R has become an interesting anti-inflammatory target in a variety of disease areas (Dhineshwar and Mackie, 2014; Picone and Kendall, 2015), including pain (Guindon and Hohmann, 2008; Anand et al., 2009), neurologic disorders (e.g., Parkinson’s disease and Huntington’s chorea) (Cabrál et al., 2008; Fernández-Ruiz et al., 2011; Aso et al., 2013), osteoporosis (Ofek et al., 2006), nephropathy (Mukhopadhyay et al., 2010, 2016), hepatic diseases (Loterstajn et al., 2008), and ischemia reperfusion injury (Guindon and Hohmann, 2008; Anand et al., 2009), neurologic disorders (e.g., Parkinson’s disease and Huntington’s chorea) (Cabrál et al., 2008; Fernández-Ruiz et al., 2011; Aso et al., 2013), osteoporosis (Ofek et al., 2006), nephropathy (Mukhopadhyay et al., 2010, 2016), hepatic diseases (Loterstajn et al., 2008), and ischemia reperfusion injury.
A decade ago, the concept of drug-target binding kinetics was introduced as a means to better predict the in vivo efficacy of ligands, in addition to conventional lead optimization parameters such as ligand affinity and potency (Copeland et al., 2006). The concept takes into account the receptor recognition of the ligand, defined by the association rate (k_{on} in nM$^{-1}$/min$^{-1}$) and the ligand-receptor complex stability, defined by the dissociation rate (k_{off} in min$^{-1}$). These kinetic parameters hold important information that can be related to a drug’s in vivo efficacy. For instance, the residence time (RT), which is defined as the reciprocal of k_{off}, is a measure of the stability of the ligand-receptor complex and has been shown (retrospectively) to correlate with drug efficacy and safety (Tummino and Copeland, 2008). In addition, recent studies outlined the importance of a high k_{on} value as an important determinant to achieve sufficient target occupancy (de Witte et al., 2016) by means of rebinding and micro-pharmacokinetic processes (Sykes et al., 2014; Vauquelin, 2016).

To the best of our knowledge, to date there have been no reports on CB2R ligand binding kinetics. Therefore, applying this novel approach to study the CB2R kinetic binding behavior of endogenous and synthetic ligands could yield important insights in cannabinoid receptor drug research.

With respect to the classic filtration binding assay typically performed with the unselective $[^{3}H]$CP55,940, kinetic binding experiments require a more robust radiolabeled tool compound with low nonspecific binding (NSB). In this study, we describe the characterization of $[^{3}H]$RO6957022 (Fig. 1), a novel tritiated compound with nanomolar affinity, inverse agonist behavior, and high selectivity for CB2R (Slavik et al., 2015). This compound is based on a 2,5,6-substituted pyridine scaffold and was previously reported as a positron emission tomography imaging probe in $[^{11}C]$-labeled form (Slavik et al., 2015). To support its relevance as an in vitro binding kinetics tool compound, we used it to determine the kinetic binding profile of chemically diverse CB2R ligands in the range of full, partial, and inverse agonists. Moreover, this paper describes for the first time the binding kinetics of endocannabinoids on CB2R.

Materials and Methods

Chemicals and Reagents. Bovine serum albumin (BSA), poly-ethylenimine (PEI), CP55,940, GW405833, AM1241, and AM630 were purchased from Sigma Aldrich (St. Louis, MO). JWH-133, HU-308, AEA, 2-AG, and naloxin (NE) were supplied by Tocris Bioscience (Bristol, United Kingdom). Bicinchoninic acid protein assay reagent was purchased from Pierce Chemical Co. (Rockford, IL). SR144528 was purchased from Santa Cruz Biotechnology (Dallas, TX). LEI-101 was purchased from Santa Cruz Biotechnology (Dallas, TX). LEI-101 was provided by M. Baggeelaar from the Molecular Physiology Group (Leiden Institute of Chemistry, Leiden University). PathHunter β-arrestin Chinese hamster ovary (CHO)-K1 cells stably expressing human CB2R (CHO-K1 hCB2) were purchased from DiscoveRx (Fremont, CA). All other chemicals were of analytical grade and obtained from commercial sources.

Cell Culture and Membrane Preparation. CHO-K1 hCB2 cells were cultured in Dulbecco’s modified Eagle’s media/nutrient F-12 Ham 1:1 mixture (Sigma-Aldrich, St. Louis, MO) supplemented with 10% fetal calf serum (Sigma), 300 μg/ml hygromycin (InvivoGen, San Diego, CA), 800 μg/ml G418 (Duchefa Biochemie, Haarlem, The Netherlands), 100 μg/ml penicillin/streptomycin (Duchefa Biochemie, Haarlem, The Netherlands), and Glutamax (Gibco, Waltham, MA) at 37°C and 5% CO2. Cells were subcultured twice a week at 90% confluency. Confluent cells were trypsinized and pooled. Subsequently, cells were pelleted and resuspended in ice-cold buffer (50 mM Tris-HCl at pH 7.4) and homogenized using an Ultra Turrax homogenizer (IKA-Werke GmbH & Co. KG, Staufen, Germany). CHO-K1 hCB2 membranes were obtained by a double centrifugation step at 100,000 g for 20 minutes (Optima LE-80K Ultracentrifuge, Beckman Coulter, Brea, United States), after which the suspension was aliquoted and stored at −80°C until further use. Just prior to use membranes were thawed, homogenized using an Ultra Turrax homogenizer and diluted to 60 μg/ml with ice-cold assay buffer (Tris-HCl 50 mM, pH 7.4 and 0.1% BSA). Protein concentrations were determined for each batch of membranes by a bicinchoninic acid protein assay (Smith et al., 1985).

Preparation of $[^{3}H]$RO6957022. A solution of 870 μg (2.14 mmol) of the O-desmethyl precursor 3-ethyl-2-(6-cyclopentylmethyl)-5-[3-(hydroxazetidin-1-yl)pyridinomido]-2-ethylbutanate and 1.43 mmol of Lithium bis(trimethylsilyl)amide (1 M in Tetrahydrofuran) in 100 μl of Dimethylformamide was added to 50 mCi (1.85 GBq, 0.714 TBq/mmol). Radiochemically highly pure material (99%) can be obtained by additional high-performance liquid chromatography purification with Waters (GmbH Eschborn, Germany) XBridge C18, acetonitrile/water 30/70 to 90/10 over 20 minutes.

Saturation Binding Experiments with $[^{3}H]$RO6957022. In this saturation experiments, CHO-K1 hCB2 membranes (1.5 μg per well) were incubated with radioligand in assay buffer (Tris-HCl 50 mM, pH 7.4, and 0.1% BSA) at 25°C for 90 minutes (to ensure equilibrium was reached at all radioligand concentrations).

Disposition Experiments with $[^{3}H]$RO6957022. In the displacement experiments, CHO-K1 hCB2 membranes (1.5 μg per well) were incubated in assay buffer at 25°C.
with a fixed amount of \(^{3}\text{H}\)RO6957022 (3 nM) in the presence of increasing concentrations of unlabeled competing ligand. The dilution series of unlabeled competing ligand were dispensed by a HP D300 digital dispenser (Tecan, Giessen, The Netherlands) and incubated until equilibrium was reached. TB was determined in the presence of buffer and set at 100%, while NSB was determined in the presence of AM630 (10 \mu M) and set at 0%. Harvesting and counting procedures were performed as described in Saturation Binding Experiments with \(^{3}\text{H}\)RO6957022. Association and Dissociation Experiments with \(^{3}\text{H}\)RO6957022. In the association experiments, CHO-K1 hCB2 membranes (1.5 \mu g per well) were incubated in assay buffer at 25°C with a fixed amount of AM630 (10 \mu M) and set at 0%. Harvesting and counting procedures were performed as described in Saturation Binding Experiments with \(^{3}\text{H}\)RO6957022. Association and Dissociation Experiments with \(^{3}\text{H}\)RO6957022. In the association experiments, CHO-K1 hCB2 membranes (1.5 \mu g per well) were incubated in assay buffer at 25°C with a fixed amount of

Fig. 1. Chemical structures of the tested CB2R ligands. The present compound selection included synthetic full (i.e., RO6957022, CP55,940, HU-308, and AM1241), partial (i.e., GW405833) and inverse agonists (i.e., SR144528 and AM630), as well as endogenous CB2R ligands (i.e., 2-AG, AEA, and NE).
[(3H)RO6957022 (3 nM) at different time points between 0 and 90 minutes. For dissociation experiments, membranes were incubated for 90 minutes in assay buffer at 25°C with a fixed amount of [(3H)RO6957022 (3 nM). Subsequently, dissociation of [(3H)RO6957022 was initiated by addition of 5 μL of an excess of AM630 (final concentration of 10 μM) to each well at different time points between 0 and 90 minutes. AM630 was chosen as a displacer of its inverse agonist nature and different chemical scaffold with respect to RO6957022. Harvesting and counting procedures were performed as described in Saturation Binding Experiments with [(3H)RO6957022.

Competition Association Experiments with [(3H)RO6957022. The kinetic parameters of unlabeled competitor ligands were determined using the competition association assay as described by Motulsky and Mahan (1984). CHO-K1_hCB2 membranes (1.5 × 10^6 per well) were incubated in assay buffer at 25°C with a fixed amount of [(3H)RO6957022 (3 nM) at different time points between 0 and 90 minutes in either the absence (control) or presence of an unlabeled competing ligand. Assay validation was performed by homologous competition association, as described in the results section (Fig. 3). The IC50 concentrations of the unlabeled competitor ligands were used to obtain approximately 50% displacement of the radioligand after 90 minutes of incubation with [(3H)RO6957022. Appropriate vehicle controls [i.e., dimethylsulfoxide, ethanol, and Tocrisolve (Tocris Bioscience)] were used according to the solvent used for each ligand. To prevent degradation of the endocannabinoids during the assay, 1 μM of phenylmethylsulfonyl fluoride was added to membrane preparations 30 minutes in advance of the assay. Harvesting and counting procedures were performed as described in Saturation Binding Experiments with [(3H)RO6957022.

Data Analysis. All data were analyzed using GraphPad Prism v7.00 for Windows (GraphPad Software, Inc., San Diego, CA). The equations given subsequently were used to analyze the data and fit the curves. Application of the F test (Ludden et al., 1994) as implemented for comparison of nested models showed that a monophasic association model described the data sufficiently. When we considered two nested models, in which model 1 corresponded to the simpler model, we applied the following equation: F = (SS1 - SS2)/DF1 - (SS2/DF2), where SS is the sum of the squares and DF is the degrees of freedom for each model. For specific saturation binding of [(3H)RO6957022, the data were analyzed with the nonlinear regression one site--specific binding model of GraphPad Prism, given by the following equation: Y = Bmax × X/[(Kd + X)], where Y is the specific radioligand binding in pmol/mg protein, Bmax is the total amount of receptors, X represents the [(3H)RO6957022 concentration in nanomolars, and Kd is the equilibrium affinity constant in nanomolars. For the homologous and heterologous displacement experiments, the data were analyzed with the nonlinear regression one site--fit log IC50 model given by the following equation:

Y = Bottom + (Top - Bottom) / (1 + 10^(logIC50 × Y))

where Y is the specific [(3H)RO6957022 binding, Top and Bottom are the plateau values of the curves both in the unit of Y, X represents the unlabeled competitor concentration in log M, and log IC50 is the equilibrium affinity of the competing ligand used. Subsequently, the Kd values were calculated using the Cheng-Prusoff equation (Cheng and Prusoff, 1973): Kd = IC50/(1 + ([L]/Kp)), where [L] is the [(3H)RO6957022 concentration in nanomolars and Kp is the equilibrium affinity value of [(3H)RO6957022 in nanomolars. The association rate constants (kobs) were determined by the following equation: kobs = (koff - koff′)/[L], where [L] is the [(3H)RO6957022 concentration in nanomolars. The observed association rate constants (kobs) were determined with a one-phase exponential association analysis: Y = Y0 + (Plateau – Y0) × (1 + exp(−koff × t)) where Y0 is the specific radioligand binding at time 0. Plateau represents the maximum specific [(3H)RO6957022 binding at equilibrium, koff is the observed association rate in min^-1, and t is time in minutes. The dissociation rate constants (koff) were determined with a one-phase exponential decay analysis: Y = (Y0 - NSB) × exp(−koff × t) + NSB, where koff is the dissociation rate constant in min^-1. The data from the homologous and heterologous competition association experiments were analyzed by the following equation: Kd = koff/(1 + [L]/Kp) + (koff′ - koff × Kp) × exp(−koff′ × t) - (koff - koff′ × Kp) × exp(−koff × t), using the following variables:

Kd = k1[L] + k2
Kb = k3[I] + k4
Ka = 0.5 × Kd + Kb - \sqrt{\frac{(Kd - Ka)^2 + 4 \times k1k3[L][I]}{2k1k3}}
Kb = 0.5 × Ka + Kb - \sqrt{\frac{(Kd - Ka)^2 + 4 \times k1k3[L][I]}{2k1k3}}

where [L] is the amount of receptor-ligand complex; [I] is the concentration [(3H)RO6957022 in nanomolars; [I] depicting the concentration of unlabeled competitor in nanomolars; Kd and Kd′ are the observed association (kobs) of [(3H)RO6957022 and the unlabeled competitor, respectively; k1 and k2 are the association rate constants (kobs) of [(3H)RO6957022 and the unlabeled competitor, respectively; k3 and k4 are the dissociation rate constants (koff) of [(3H)RO6957022 and the unlabeled competitor, respectively; and t is the time in minutes.

The receptor RT was calculated by taking the reciprocal of the dissociation rate (1/koff) (Copeland et al., 2006). The correlation between two independent variables with the Gaussian distribution was calculated by using the Pearson correlation coefficient (r), with two-tailed P value determination (Benesty et al., 2009).

Results

Assay Binding Optimization of [(3H)RO6957022 to the Human CB2 Receptor. Initial experiments were focused on specific [(3H)RO6957022 binding to human CB2R and optimizing the assay conditions for in vitro binding studies. Therefore, the presence of several additives were initially tested in a standard assay buffer (50 mM Tris HCl, pH 7.4) together with 3 nM of [(3H)RO6957022 and CHO-K1_hCB2 membranes (Fig. 2A). To reduce the NSB of [(3H)RO6957022 to the GF/C filters during the harvesting process, the filters were preincubated for 30 minutes with PEI, which resulted in a dramatic decrease in NSB, which was largely caused by filter binding of [(3H)RO6957022 (Fig. 2A). We thus concluded that the presence of 0.1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonylic acid or 0.1% w/v BSA (which we finally selected) in the assay buffer and pretreatment of the filters with 0.25% w/v of PEI was sufficient to provide a signal-to-noise ratio of [(3H)RO6957022 binding of sufficient quality. Moreover, receptor specificity was confirmed by comparing the specific binding in CHO-K1_hCB2 versus control CHO cells without overexpressing CB2R (Fig. 2B). Subsequently, membrane titration was performed to assess which concentration yielded an optimal window, i.e., large enough but below the ligand depletion limit (i.e., 10% of the total amount of radioligand present). By using 1.5 μg/well of CHO-K1_hCB2 membranes we obtained approximately 4000 dpm of specific binding. As expected, [(3H)RO6957022 specific binding was directly correlated with the concentration of CHO-K1_hCB2 membranes used (Fig. 2C), while NSB was not affected, indicating that this residual binding was indeed mostly caused by the filter.

[(3H)RO6957022 Saturation Experiment to the Human CB2 Receptor.** To confirm the affinity of [(3H)RO6957022 for CB2R, we performed equilibrium saturation binding experiments (Fig. 3A). Binding of [(3H)RO6957022 to CHO-K1_hCB2...
membranes was saturable and best described by a one-site model. The equilibrium dissociation constant (K_D) of $[^3H]RO6957022$ was found to be $1.7 \pm 0.1 \text{nM}$, with a receptor density (B_{max}) value of $25 \pm 1 \text{ pmol/mg protein}$ in the membranes used (Table 1).

Equilibrium Displacement Assay Using $[^3H]RO6957022$ and CB2R Reference Ligands. Next, $[^3H]RO6957022$ was used to perform displacement experiments with eight previously reported orthosteric CB2R ligands (Fig. 1). These included agonists (CP55,940, JWH-133, AM1241, and HU-308), a partial agonists (GW405833, LEI-101), and inverse agonists (SR144528 and AM630). All compounds tested were able to fully displace $[^3H]RO6957022$ from the orthosteric binding site with nanomolar affinities (Fig. 4; Table 2). In addition, we performed a homologous displacement assay with RO6957022, which resulted in an affinity of 1.3nM ($pK_i = 8.9$) for the unlabeled compound, i.e., similar to its equilibrium K_D value determined from $[^3H]RO6957022$ saturation experiments (Fig. 1; Table 1).

Kinetic Characterization of $[^3H]RO6957022$ on the Human CB2 Receptor. Subsequently, the association (k_{on}) and dissociation (k_{off}) rate constants of $[^3H]RO6957022$ were determined (Fig. 3B; Table 2). The binding of $[^3H]RO6957022$ reached equilibrium after approximately 10 minutes at 25°C. Specific $[^3H]RO6957022$ binding was stable for at least 3 hours (Supplemental Fig. 1) and reversible, since complete dissociation was achieved within 60 minutes upon addition of $10 \mu\text{M}$ of AM630 (Fig. 3B). From the association and dissociation curves, the k_{on} value was determined to be $0.11 \pm 0.01 \text{nM}^{-1}\text{min}^{-1}$, while the k_{off} value was determined to be $0.16 \pm 0.01 \text{ min}^{-1}$, respectively. The latter resulted in a RT of $6.3 \pm 0.5 \text{ minutes}$ (Table 1). Using the obtained k_{on} and k_{off} values, the kinetic K_D value was determined to be 1.4nM, which was in agreement with the equilibrium K_D and K_i values obtained from the saturation and homologous displacement experiments, respectively.

$[^3H]RO6957022$ Homologous Competition Association. With the k_{on} (k_1) and k_{off} (k_2) values of $[^3H]RO6957022$ already quantified, the k_{on} (k_3) and k_{off} (k_4) values for unlabeled RO6957022 were determined by performing homologous competition association experiments as a validation step (Fig. 5). For this purpose, three different concentrations of RO6957022 were used to compete with $[^3H]RO6957022$ (i.e., 1, 3, and 9 nM), which corresponded to 0.3-, 1.0-, and 3.0-fold IC$_{50}$ concentrations, respectively. This resulted in k_{on} (k_3) and k_{off} (k_4) values for unlabeled RO6957022 of $0.13 \pm 0.03 \text{nM}^{-1}\text{min}^{-1}$ and $0.18 \pm 0.01 \text{ min}^{-1}$, respectively (Table 2). Comparison of these values, as well as the calculated kinetic K_D and the other equilibrium and kinetic parameters obtained (Table 2), confirmed the accuracy of the $[^3H]RO6957022$ competition
association assay to determine the kinetics of unlabeled competitors at the CB2R. As proof of concept, the obtained kinetic parameters derived from the shared analysis in the presence of three concentrations of RO6957022 were compared with the k_3 and k_4 values determined with a single concentration (i.e., 1.0-fold IC$_{50}$). Comparable values were achieved with only one concentration of competing unlabeled ligand (Table 2); therefore, a similar approach was also applied for the subsequent kinetic binding studies of other unlabeled competitors.

Table 1
Affinity and kinetic binding properties of [3H]RO6957022 as determined by various assay types

<table>
<thead>
<tr>
<th>Binding Assay</th>
<th>k_{on} (nM$^{-1}$/min$^{-1}$)</th>
<th>k_{off} (min$^{-1}$)</th>
<th>RT (minute)</th>
<th>K_D, K_i (nM)</th>
<th>B_{max} (pmol/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associationa</td>
<td>0.11 ± 0.01</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dissociationb</td>
<td>—</td>
<td>0.16 ± 0.01</td>
<td>6.3 ± 0.5</td>
<td>1.4 ± 0.2</td>
<td>—</td>
</tr>
<tr>
<td>Competition association (three concentrations)c</td>
<td>0.13 ± 0.03</td>
<td>0.18 ± 0.01</td>
<td>5.5 ± 0.3</td>
<td>1.4 ± 0.3</td>
<td>—</td>
</tr>
<tr>
<td>Competition association (one concentration)d</td>
<td>0.15 ± 0.03</td>
<td>0.19 ± 0.03</td>
<td>5.3 ± 0.7</td>
<td>1.3 ± 0.4</td>
<td>—</td>
</tr>
<tr>
<td>Saturatione</td>
<td>—</td>
<td>—</td>
<td>1.7 ± 0.1</td>
<td>25 ± 1</td>
<td>—</td>
</tr>
<tr>
<td>Displacementf</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

aAssociation rate constants as determined with [3H]RO6957022 (for corresponding graph see Fig. 3B).

bDissociation rate constants as determined with [3H]RO6957022 (for corresponding graph see Fig. 3B).

cCompetition association with three concentrations (0.3-, 1.0-, and 3.0-fold IC$_{50}$) of cold RO6957022 (for corresponding graph see Fig. 4).

dCompetition association with a single concentration (1.0-fold IC$_{50}$) of cold RO6957022 (for corresponding graph see Fig. 4); $K_D = k_{off}/k_{on}$.

eSaturation association with a single concentration (1.0-fold IC$_{50}$) of cold RO6957022 (for corresponding graph see Fig. 4); $K_i = k_{off}/k_{on}$.

fThe K_D value obtained from saturation binding of [3H]RO6957022 (for corresponding graph see Fig. 3A).

gThe K_i value obtained from homologous displacement of cold RO6957022 by [3H]RO6957022 (for corresponding graph see Fig. 4).

Data shown are presented as the mean ± S.E.M. of at least three individual experiments, em dashes indicate the absence of value for the corresponding assay.
Kinetic Binding Profile Determination of Known Synthetic CB2 Ligands. Using the validated [3H]RO6957022 competition association assay, five of the eight CB2R ligands that were tested in a displacement assay (CP55,940, JWH-133, AM1241, and HU-308, partial (GW405833, LEI-101), and inverse (SR144528 and AM630) agonists, including homologous displacement of [3H]RO6957022. Data are shown as the mean and S.E.M. of three independent displacement experiments each performed in duplicate.

TABLE 2

Affinity and kinetic binding properties of CB2R reference ligands determined by [3H]RO6957022 displacement and competition association experiments

<table>
<thead>
<tr>
<th>Compound</th>
<th>pK_i (K_i) (nM)</th>
<th>k_on (min^-1)</th>
<th>k_off (min^-1)</th>
<th>RT (minute)</th>
<th>K_D (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO6957022</td>
<td>8.9 ± 0.05 (1.2)</td>
<td>0.15 ± 0.03</td>
<td>0.19 ± 0.03</td>
<td>5.3 ± 0.7</td>
<td>1.3 ± 0.4</td>
</tr>
<tr>
<td>CP55,940</td>
<td>9.3 ± 0.03 (0.50)</td>
<td>0.22 ± 0.02</td>
<td>0.20 ± 0.02</td>
<td>5.0 ± 0.4</td>
<td>0.90 ± 0.1</td>
</tr>
<tr>
<td>JWH-133</td>
<td>7.4 ± 0.07 (39)</td>
<td>0.0042 ± 0.001</td>
<td>0.31 ± 0.07</td>
<td>3.2 ± 0.7</td>
<td>75 ± 24</td>
</tr>
<tr>
<td>HU-308</td>
<td>7.6 ± 0.08 (25)</td>
<td>0.011 ± 0.001</td>
<td>0.23 ± 0.01</td>
<td>4.2 ± 0.2</td>
<td>21 ± 3</td>
</tr>
<tr>
<td>AM1241</td>
<td>8.2 ± 0.03 (6.3)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>GW405833</td>
<td>8.4 ± 0.02 (3.5)</td>
<td>0.25 ± 0.06</td>
<td>0.70 ± 0.1</td>
<td>1.4 ± 0.3</td>
<td>2.8 ± 0.8</td>
</tr>
<tr>
<td>SR144528</td>
<td>8.3 ± 0.02 (5.0)</td>
<td>0.028 ± 0.003</td>
<td>0.12 ± 0.02</td>
<td>8.7 ± 1.7</td>
<td>4.1 ± 0.9</td>
</tr>
<tr>
<td>AM630</td>
<td>7.7 ± 0.03 (20)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Receptor affinities (K_i) were calculated using the Cheng-Prusoff equation (Cheng and Prusoff, 1973). Kinetic binding parameters (i.e., k_on and k_off) were obtained using the Motulsky-Mahan model (Motulsky and Mahan, 1984). The derived affinity values were calculated using the equation K_D = k_off/k_on. The results shown are the mean ± S.E.M. of at least three individual experiments, em dashes indicate the absence of value for the mentioned compound.

Finally, we assessed the binding kinetics of the two major endocannabinoids on CB2R (Fig. 1), AEA and 2-AG, as well as a proposed endocannabinoid, NE. In competition association experiments with [3H]RO6957022, the three endocannabinoids displayed a distinct kinetic profile. As for the synthetic agonists, the dissociation rate constants displayed moderate differences with AEA having the highest RT of 1.4 minutes, followed by 2-AG and NE with 0.31 and 0.16 minutes, respectively (Fig. 7; Table 2). In contrast and similar to the synthetic agonists, the endocannabinoid-receptor association rates were quite different, where 2-AG and NE had more than 10-fold higher k_on values than AEA.

Correlation Plots. Considering that the affinity of a ligand is a function of its k_on and k_off values for a target, all of the derived kinetic target affinities were compared with the corresponding equilibrium affinity values obtained with the heterologous displacement experiments (Fig. 8A). A strong correlation (r = 0.984, P < 0.0001) between the negative logarithm of equilibrium affinity values (pK_i) and the kinetic affinity (pK_D) values of all tested ligands was observed. Similarly, we plotted the k_on (Fig. 8B) and k_off (Fig. 8C) values against the corresponding ligand affinities, where a significant positive correlation was found between the k_on and affinity values (r = 0.902, P < 0.014); on the other hand, no correlation was found between the affinity and k_off values (r = -0.177, P < 0.738). To visualize the relationship between a ligand’s k_on and k_off values with regard to its affinity, a kinetic map was prepared (Fig. 8D), where compounds along the same diagonal lines show similar affinities, but have different kinetic properties. For instance, SR144528 and GW405833 displayed similar K_D values (i.e., located on same diagonal), but SR144528 had a slower dissociation rate, while GW405833 compensated its fast dissociation rate with an increased receptor association rate. Taken together, the kinetic map shows that each compound possesses a characteristic kinetic profile, which is not necessarily correlated to its affinity.
Discussion

A decade after the (re)introduction of the concept of target RT of drugs (Copeland et al., 2006) growing evidence has been accumulated on its potential implications in lead optimization when used prospectively (Guo et al., 2017). The concept behind receptor-ligand kinetics is to select candidate drugs based not only on their affinity but also by taking into account their association and dissociation rates to and from their target (Copeland et al., 2006). However, when one desires to use a compound’s kinetic binding profile prospectively, kinetic binding assays are needed that often require radiolabeled or fluorescently labeled tool compounds.

In this study, we report the characterization of [3H]RO6957022, a novel high-affinity radioligand with high selectivity for the human CB2R. Recently, an [11C] derivative of this compound was reported as a positron emission tomography imaging probe (Slavik et al., 2015), in which it was shown that reduced lipophilicity (log D$_{7.4}$ = 1.94), high CB2R affinity (K_i = 2.5 nM), and selectivity (<1000 times over hCB1) with a corresponding spleen-specific biodistribution made this compound a valuable tool for in vivo positron emission tomography screenings. Another aspect that makes [3H]RO6957022 a suitable tool compound for in vitro kinetic binding assays is its inverse agonistic behavior. CB2R pharmacological studies are often performed in heterologous cell lines overexpressing the receptor. These in vitro systems, the increased receptor expression often is not accompanied by augmented G protein levels; therefore, a large part of the receptor population is in its inactive form (CHO-K1_hCB2), in which considerably high levels of large part of the receptor population is in its inactive form (i.e., CHO-K1_hCB2), in which considerably high levels of receptors were expressed as determined by saturation experiments (Table 1). This scenario an inverse agonist radioligand is the preferred option for (kinetic) binding studies since the biggest receptor subpopulation is targeted, which results in a larger assay window. This concept was also experimentally tested in parallel with the prototypical probe [3H]CP55,940 (Supplemental Fig. 1). Although [3H]RO6957022 has lower specific activity with respect to [3H]CP55,940, both radioligands displayed comparable TB signals, supporting the idea behind the use of an inverse agonist for these studies. On the other hand, NSB of [3H]RO6957022 was significantly lower, as expected from its aforementioned improved features, confirming the usefulness of this new probe for filtration binding studies.

Once the [3H]RO6957022 competition association assay was validated (Fig. 5), we selected representative compounds from the CB2R reference ligands, i.e., two full agonists (CP55,940 and JWH-133), a partial agonist (GW405833), and an inverse agonist (SR144528), for proof of concept. Using this [3H]RO6957022 assay we were able to determine the k_{on} and k_{off} values of all tested ligands. The derived kinetic K_i values obtained from these kinetic data were highly correlated to the obtained equilibrium K_i values (Fig. 8A), confirming the consistency of the kinetic binding data obtained with [3H]RO6957022. Among the tested ligands, SR144528 showed the longest residence time (RT = 8.7 ± 1.7 minutes), resulting in a characteristic but small overshoot of the competition association curve (Fig. 6). The present kinetic binding data, together with the desirable pharmacokinetic features of SR144528, could explain its long-lasting CB2R target occupancy reported in mouse spleen (Rinaldi-Carmona et al., 1998). Of note, since all measured receptor RTs are quite short (Table 2), the pharmacokinetics of these compounds is probably faster than their receptor RT, which means that the latter parameter will probably not be (solely) driving their pharmacodynamics effects in vivo (Dahl and Akerud, 2013). However, the association rate constants exhibited a substantial spread, covering more than two log units among the studied CB2R synthetic and endogenous ligands, while the dissociation rates were more similar. Furthermore, as opposed to their dissociation rate constants, the association rate constants significantly correlated with the K_i value, implying that the k_{on} value was the main driving force in CB2R affinity in the tested synthetic ligands. This is in contrast to a more common observation that target RT is the principal determinant for receptor affinity, as was reported on a number of targets, e.g., M_3 (Sykes et al., 2009) and A2A (Guo et al., 2012) receptors. However, there are some reports where the influence of the k_{off} value on affinity has been described. For instance, agonists for the β_2-adrenergic receptor (Sykes and Charlton, 2012) and modulators of the K$_{11.1}$ (hERG) channel (Yu et al., 2015a,b) showed a similar correlation between k_{off} and affinity, where a role for the lipid membrane was postulated in the β_2-adrenergic receptor. This reinforces the notion that variations in the k_{off} values can greatly impact the overall receptor affinity (de Witte et al., 2016; Vauquelin, 2016).

Considering the binding kinetic profile and physicochemical properties of the tested ligands, phenomena such as rebinding and membrane interactions should also be taken into account, since these are likely to generate so-called micro-pharmacokinetics and -dynamics in the proximity of CB2R, which can affect the kinetic binding parameters. For AEA (Tian et al., 2005) and
CP55,940 (Kimura et al., 2009), there is evidence that these ligands approach the CB2R by fast lateral diffusion from the membrane bilayer. This was substantiated in the recently published cannabinoid receptor type 1 crystal structure, in which putative lipid access from the membrane bilayer was also described (Shao et al., 2016). Similarly, for AM841 (Pei et al., 2008), a CB2R covalent agonist, and 2-AG (Hurst et al., 2010) it has been shown that these ligands first distribute in the lipid bilayer and then bind and activate the receptor within microseconds (Hurst et al., 2010). The latter fits well with the high k_{on} value of 2-AG obtained in our kinetic binding experiments.

Finally, in light of the high and dynamic endocannabinoid tone in healthy states—and especially in diseased states (Cabral and Griffin-Thomas, 2009)—the characterization of the kinetic binding behavior of these endogenous ligands can reveal important insights about the physiology of these lipid mediators. Although the assessed affinities of the three endocannabinoids were in a close range ($pK_D = 6.5–7.0$), significant differences were found in their kinetic binding profiles, i.e., 2-AG and NE showed a 10-fold higher k_{on} value for CB2R compared with AEA (Fig. 7; Table 2). Interestingly, their association rates appear to correlate with the described
functional nature, i.e., 2-AG is a full agonist for the CB2R and AEA is a partial agonist (Gonsiorek et al., 2000; Soethoudt et al., 2017). Moreover, the obtained molecular evidence of the endocannabinoid-CB2R binding kinetics fits with the on-demand nature of the endocannabinoid system (Di Marzo, 2009), where endocannabinoids are rapidly and locally synthesized or degraded, which allows for swift receptor binding without a prolonged functional effect (Piomelli, 2003). Considering the substantial paracrine concentrations of 2-AG, together with its high k_{on} value toward CB2R, it can be speculated that this endocannabinoid will quickly achieve effective target occupancy (Schoop and Dey, 2015). Furthermore, CB2R has been reported to rapidly undergo desensitization (Bouaboula et al., 1999). With this in mind, more transient receptor activation would be favorable for an effective but safe physiologic action.

Therefore, the question arises whether a long or short RT would be most desirable for the CB2R. The short RTs of the endogenous cannabinoids (Table 2) may constitute a clue already, since knowing the binding kinetics of a target’s endogenous ligands could give important information for a proper pharmacological intervention (Nederpelt et al., 2016). Likewise, the high k_{on} values and short RTs found for the synthetic ligands in Table 2 are reminiscent of what has already been described for other molecular targets (Copeland, 2010), in which a pulse (i.e., fast k_{on} and k_{off}) rather than sustained target occupancy by an antagonist is beneficial in achieving desirable pharmacological outcomes and reduced side effects. An example of the latter is the dopamine D2 receptor (Pan et al., 2008). For this target a positive correlation was found between extrapyramidal side effects and prolonged receptor blockade by long RT antagonists (Seeman, 2005), possibly due to the continued...
suppression of the subcortical dopaminergic activity (Casey, 2004). Analogously, pharmacological interventions on CB2R should consider the local mediator function of endocannabinoids (Di Marzo, 2008) in physiology and their pivotal role in immunomodulation. Specifically, CB2R activation triggers a complex signal cascade that can either reduce the early phases of the immune response (Herring et al., 1998) through inhibition of adenylyl cyclase or induce immunosuppression through apoptosis mechanisms (Eisenstein et al., 2007). To date, the inhibitory effects of cannabinoids on the immune system are known to be transient (Pandey et al., 2009), allowing the immune response to be quickly restored for potential infectious threats. Therefore, although speculative, long RT CB2R agonists as well as antagonists would not be desirable, since they would continuously interfere with endocannabinoid system homeostasis, ultimately leading to adverse effects.

Conclusions

We have characterized a novel, high-affinity inverse agonist radioligand for human CB2R, the 2,5,6-substituted pyridine derivative [3H]RO6957022. Its CB2R binding properties have been validated in equilibrium saturation and displacement assays, as well as kinetically in (competition) association and dissociation assays. Using a variety of CB2R reference ligands, we showed that [3H]RO6957022 is an excellent tool compound to determine ligand affinities and kinetic rate constants at CB2R, including (for the first time) the kinetic binding profiles of the CB2R endogenous ligands. The latter gives important insights into the mechanism of action for these mediators of such paramount lipid signaling. This improved knowledge of endocannabinoid system physiology can be translated into a better therapeutic drug design strategy. Thus, with the introduction of [3H]RO6957022 we hope to aid and stimulate the development and kinetic optimization of ligands for CB2R in early drug discovery.

Acknowledgments

The authors thank Mathias Müller for the contribution to the synthesis of [3H]RO6957022.

Authorship Contributions

Participated in research design: Martella, Rufer, Grether, Fingerle, Ullmer, Ljzerman, van der Stelt, Heitman.

Conducted experiments: Martella, Sijben.

Contributed new reagents or analytic tools: Grether, Hartung, van der Stelt.

Performed data analysis: Martella, Sijben, Rufer.

Wrote or contributed to the writing of the manuscript: Martella, Rufer, Grether, Fingerle, Ullmer, Ljzerman, van der Stelt, Heitman.

References

Cheng Y and Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of a enzymatic reaction. Biochem Pharmacol 22: 3059–3108.

Downloaded from molpharm.aspetjournals.org at ASPET Journals on July 5, 2021
A novel selective inverse agonist of the CB2 receptor as a radiolabeled tool compound for kinetic binding studies.

Andrea Martella, Huub Sijben, Arne C. Rufer, Uwe Grether, Juergen Fingerle, Christoph Ullmer, Thomas Hartung, Adriaan P. IJzerman, Mario van der Stelt and Laura H. Heitman

Sup. Fig.1. Filtration binding comparison between $[^3]$HRO6957022 and $[^3]$HCP55,940. Total (TB) and non-specific (NSB) binding, were determined in the absence or presence of AM630 (10 µM), respectively (A). Similar assay conditions (i.e. Tris-HCl 50 mM, pH 7.4 (25°C) and 0.1% BSA) were used for both radioligands, except for MgCl$_2$ (5 mM) added to the $[^3]$HCP55,940 samples. Data are shown as mean ± S.E.M. of three independent experiments performed in duplicate; statistical significance was determined by student t-test ($***$ p < 0.001). Please note the differences in specific activity for both radioligands ($[^3]$HRO6957022, 83.7 Ci/mmol, and $[^3]$HCP55,940, 150.2 Ci/mmol). Prolonged binding association experiment with 3 nM $[^3]$HRO6957022 interacting with CHO-K1_hCB$_2$ membranes at 25°C (B). Data are shown as mean ± S.E.M. of three independent experiments.