The Anthracycline Metabolite Doxorubicinol Abolishes RyR2 Sensitivity to Physiological Changes in Luminal Ca\(^{2+}\) through an Interaction with Calsequestrin

Amy D. Hanna, Alexander Lam, Chris Thekkedam, Hermia Willemse, Angela F. Dulhunty, and Nicole A. Beard

John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia (A.D.H., A.L., C.T., A.F.D.) and Health Research Institute, Faculty of Education, Science, Technology and Maths, University of Canberra, Australian Capital Territory, Canberra, Australia (H.W., N.A.B.)

Received January 3, 2017; accepted September 7, 2017

ABSTRACT

The chemotherapeutic anthracycline metabolite doxorubicinol (doxOL) has been shown to interact with and disrupt the function of the cardiac ryanodine receptor Ca\(^{2+}\) release channel (RyR2) in the sarcoplasmic reticulum (SR) membrane and the SR Ca\(^{2+}\) binding protein calsequestrin 2 (CSQ2). Normal increases in RyR2 activity in response to increasing diastolic SR [Ca\(^{2+}\)] are influenced by CSQ2 and are disrupted in arrhythmic conditions. Therefore, we explored the action of doxOL on RyR2’s response to changes in luminal [Ca\(^{2+}\)] seen during diastole. DoxOL abolished the increase in RyR2 activity when luminal Ca\(^{2+}\) was increased from 0.1 to 1.5 mM. This was not due to RyR2 oxidation, but depended entirely on the presence of CSQ2 in the RyR2 complex. DoxOL binding to CSQ2 reduced both the Ca\(^{2+}\) binding capacity of CSQ2 (by 48%–58%) and its aggregation, and lowered CSQ2 association with the RyR2 complex by 67%–77%. Each of these effects on CSQ2, and the lost RyR2 response to changes in luminal [Ca\(^{2+}\)], was duplicated by exposing native RyR2 channels to subphysiologic (≤1.0 μM) luminal [Ca\(^{2+}\)]. We suggest that doxOL and low luminal Ca\(^{2+}\) both disrupt the CSQ2 polymer, and that the association of the monomeric protein with the RyR2 complex shifts the increase in RyR2 activity with increasing luminal [Ca\(^{2+}\)] away from the physiologic [Ca\(^{2+}\)] range. Subsequently, these changes may render the channel insensitive to changes of luminal Ca\(^{2+}\), that occur through the cardiac cycle. The altered interactions between CSQ2, triadin, and/or junctin and RyR2 may produce an arrhythmogenic substrate in anthracycline-induced cardiotoxicity.

Introduction

The anthracycline cytotoxic antibiotics are highly effective chemotherapeutic drugs whose use is limited by the development of cardiotoxicity (Gewirtz, 1999). The onset and progression of cardiotoxic symptoms is thought to involve an oxidation mechanism, since anthracyclines readily undergo redox cycling to increase cellular levels of reactive oxygen species (Minotti et al., 2004). We recently showed that the anthracycline doxorubicin (dox) and its metabolite doxorubicinol (doxOL) altered cardiomyocyte Ca\(^{2+}\) handling 1) by oxidation of thiol residues within the ryanodine receptor Ca\(^{2+}\) release channel (RyR2) and sarcoplasmic reticulum Ca\(^{2+}\) ATPase (SERCA2A), and 2) by binding directly to RyR2 and SERCA2A (Hanna et al., 2014a).

The molecular mechanisms that underlie the oxidative and binding effects of anthracyclines on RyR2 activity have not yet been elucidated. However, altered RyR2 response to luminal Ca\(^{2+}\) is a precipitating factor in several pathologic conditions, including sudden cardiac death (Jiang et al., 2005), ventricular tachycardia (Jiang et al., 2005), catecholaminergic polymorphic ventricular tachycardia (CPVT) (Fernandez-Velasco et al., 2009; Shan et al., 2012), and heart failure (Kubalova et al., 2005; Belevych et al., 2009). In these studies, altered channel sensitivity to luminal Ca\(^{2+}\) is associated with enhanced diastolic Ca\(^{2+}\) leak, spontaneous Ca\(^{2+}\) waves, and Ca\(^{2+}\) alternans, all of which create an arrhythmogenic substrate. We recently showed that changes in the redox state of RyR2 thiol alter the response of the channel to luminal Ca\(^{2+}\) (Hanna et al., 2014b). Given that anthracyclines are redox-active and promote oxidation of RyR2 thiol groups (Ondrias et al., 1990; Hanna et al., 2011), a focus of this study was the effect of anthracyclines on the luminal Ca\(^{2+}\) sensitivity of RyR2.

The mechanism of the response of RyR2 to changes in luminal Ca\(^{2+}\) remains under investigation, with evidence...
supporting a role for cardiac calsequestrin [calsequestrin 2 (CSQ2)]. CSQ2 is the major Ca\(^{2+}\) binding protein in the sarcoplasmic reticulum (SR) Ca\(^{2+}\) store, and communicates changes in SR store load to RyR2 (via interactions with triadin and junctin) and thus adjusts its channel activity accordingly (Qin et al., 2009; Dulhunty et al., 2012). This role for CSQ2 is supported by single-channel experiments where dissociation of CSQ2 and other accessory proteins prevented RyR2 from responding to increasing luminal Ca\(^{2+}\) levels (Györke et al., 2004; Qin et al., 2009). Other evidence from purified RyR channels indicates that RyR2 itself also has an innate ability to respond to changes in luminal Ca\(^{2+}\) (Sitsapesan and Williams, 1995, 1997; Chen et al., 2014). This has been confirmed by a single point mutation in RyR2 expressed in HEK cells that abolished luminal Ca\(^{2+}\) sensitivity (Chen et al., 2014). In addition, an active role of RyR2 in regulating Ca\(^{2+}\) leak when luminal Ca\(^{2+}\) is varied within the physiologic range has been demonstrated in cardiomyocytes from CSQ2-knockout mice (Knollmann et al., 2006). Finally, we have shown that single RyR2 channels isolated from sheep heart and stripped of CSQ2 remain responsive to changes in luminal Ca\(^{2+}\). However, this response is more sensitive to luminal Ca\(^{2+}\) than CSQ2-associated channels, indicating that CSQ2 dampens the response to changes in luminal [Ca\(^{2+}\)] (Dulhunty et al., 2012).

It is possible that anthracyclines could influence the regulation of RyR2 by luminal Ca\(^{2+}\) through an effect on the CSQ2/RyR2 interaction. Anthracyclines bind with micromolar affinity to cardiac CSQ2 (Kim et al., 2005), and it has been proposed that they target a binding site formed by a hydrophobic cleft in each of the three thioredoxin-like domains in CSQ2’s structure (Park et al., 2005). Anthracycline binding to CSQ2 has been shown to reduce the Ca\(^{2+}\) binding capacity of CSQ2 and/or alter protein conformation with subsequent reductions in SR Ca\(^{2+}\) release and SR Ca\(^{2+}\) storage capacity (Charlier et al., 2005; Kim et al., 2005; Park et al., 2005). Therefore, our aims in this study were to determine if anthracyclines alter the luminal Ca\(^{2+}\) sensitivity of RyR2, whether any effect was mediated by anthracycline binding to CSQ2, and at the same time, clarify the role of CSQ2 in setting the luminal Ca\(^{2+}\) sensitivity of RyR2.

Materials and Methods

Materials. The Novex BOLT electrophoresis system, bis/tris gels, BOLT LDL sample buffer, and electrophoresis buffer were obtained from Life Technologies (Mulgrave, Australia). The Western blot apparatus and protein standards were obtained from Bio-Rad (Gladesville, Australia). Doxorubicinol (adriamycinol) was from Toronto Research Chemicals (Toronto, ON, Canada). The Pierce classic immunoprecipitation kit, rabbit polyclonal anti-CSQ2 antibody, and Santa Cruz anti-mouse and anti-rabbit IgG were sourced from Thermo Fisher Scientific (Scoresby, VIC, Australia). The mouse monoclonal anti-RyR1 34C was from Developmental Studies Hybridoma Bank (Iowa City, IA). Phospholipids were sourced from Avanti Polar Lipids (Alabaster, AL). All other chemicals, including doxorubicin (adriamycin), were obtained from Sigma-Aldrich (Castle Hill, NSW, Australia).

SR Vesicle Isolation, RyR2 Purification, and Functional Face Membrane Purification. Cardiac SR vesicles enriched in RyR2 were isolated from sheep heart as described previously (Laver et al., 1995). RyR2 was purified using established protocols (Lai et al., 1988; Dulhunty et al., 1999; Beard et al., 2002). Junctional face membrane was prepared according to Costello et al. (1986) with a minor change (Beard et al., 2002). The work was undertaken in accordance with the Guide for the Care and Use of Laboratory Animals (1996) and was approved by the Australian National University and the University of Canberra Animal Ethics Committees.

CSQ2 Isolation and Purification. Sheep cardiac CSQ2 was purified using native preparative gel electrophoresis and the Ornstein-Davis buffer system (Davis, 1964; Ornstein, 1964), as previously published (Wei et al., 2008, 2009a). In brief, junctional face membrane was loaded onto a 7% cylindrical polyacrylamide gel, electrophoresed until the gel and fractions were eluted from the gel, and collected. Fractions containing CSQ2 were identified using SDS-PAGE and Western blot. CSQ2 was washed in a washing buffer containing 20 mM 4-morpholinepropanesulfonic acid (MOPS), 150 mM NaCl, and 1 mM CaCl\(_2\). PH 7.4.

SDS-PAGE and Western blot were performed as previously described (Laemmli, 1970; Towbin et al., 1979), with the following changes. Proteins were separated on 4%–15% SDS BOLT bis/tris polyacrylamide gels and transferred to polyvinylidene fluoride membrane for Western blot. Polyvinylidene fluoride membranes were exposed to primary antibodies to CSQ2, triadin, junctin, and RyR2 and secondary horseradish peroxidase–conjugated antibody prior to chemiluminescence detection. Images were acquired using the Odyssey Fc Dual-Mode Imaging System (LI-COR, Lincoln, NE).

Single-Channel Recording and Analysis. The bilayer potential, expressed relative to cis (cytoplasmic) solution, was voltage clamped and switched between +40 and −40 mV every 30 seconds throughout the experiment. Recording parameters have been described previously (Hanna et al., 2014a). In all bilayer studies, channel activity was recorded continuously during the entire experiment.

To test the luminal Ca\(^{2+}\) response of RyR2, trans [Ca\(^{2+}\)] was reduced from 1 to 0.1 mM by trans perfusion with a 0.1 mM Ca\(^{2+}\) solution. Channels were exposed to 0.1 mM Ca\(^{2+}\) for −2 minutes to minimize changes in CSQ2 association with the RyR2 channel complex. The trans [Ca\(^{2+}\)] was then increased in a stepwise manner to 0.5, 1, and 1.5 mM, the concentration range encountered physiologically in the SR lumen during diastole. At least 4 minutes was allowed between each addition of CaCl\(_2\) to ensure that activity stabilized to new levels, and stable activity was recorded for ~3 minutes for analysis.

We examined the effects of initial exposure to low luminal [Ca\(^{2+}\)] on RyR2 luminal Ca\(^{2+}\) sensitivity. Luminal Ca\(^{2+}\) was first lowered from 1 mM used for incorporation to 0.1 μM using 1.3 mM BAPTA in the trans solution for 6–10 minutes, then perfusing the trans chamber with the 250 mM Ca\(^{2+}\), 0.1 mM Ca\(^{2+}\) solution followed by step increases in Ca\(^{2+}\) to 1.5 mM, as described earlier. The concentrations of BAPTA required to adjust the free [Ca\(^{2+}\)] here and throughout were calculated using the program Bound and Determined (Brooks and Storey, 1992), and free [Ca\(^{2+}\)] confirmed using a Ca\(^{2+}\) electrode.

The effect of CSQ2 binding to the RyR2 complex on luminal Ca\(^{2+}\) sensitivity was examined after dissociating CSQ2 from the RyR2 complex following incorporation into the bilayer by increasing the trans ionic strength with the addition of 250 mM Cs\(^{+}\) (total [Cs\(^{+}\)] is 500 mM trans and 250 mM cis). Activity was observed until there was an obvious, sustained decrease, which indicated CSQ2 dissociation from the channel (Wei et al., 2009b). The trans chamber was then perfused with 250 mM Cs\(^{+}\) and 0.1 mM Ca\(^{2+}\) solution to prevent CSQ2 from reassociating with the channel and to restore symmetrical [Ca\(^{2+}\)]. Luminal Ca\(^{2+}\) was then increased stepwise to 1.5 mM. Additional experiments were conducted, whereby CSQ2 was reassociated with the CSQ2-dissociated channel (described earlier) by adding 16 μg/ml purified sheep cardiac CSQ2 to the trans chamber (using established protocols [Wei et al., 2009a,b]). Trans [Ca\(^{2+}\)] was lowered to 0.1 mM Ca\(^{2+}\) (by addition of 0.9 mM BAPTA) in the presence and absence of 2.5 mM doxOL, and channel responses to stepwise luminal Ca\(^{2+}\) increase to 1.5 mM were measured.

When exploring the effects of doxOL, or dithiothreitol (DTT) plus doxOL, the compounds were added and their effects on channel activity were recorded continuously during the entire experiment.

Anthracyclines Disrupt Luminal Ca\(^{2+}\) Sensitivity 577

Downloaded from molpharm.aspetjournals.org at ASEF Journals on June 20, 2021
activity recorded before the trans perfusion, and the luminal Ca\(^{2+}\) response was tested. DoxOL was included in the 0.1 mM Ca\(^{2+}\) trans perfusion solution to avoid washout of its effects. Due to the challenging nature of these experiments and time constraints, only the doxorubicin metabolite doxOL was used in bilayer experiments. DoxOL is likely to be more relevant in anthracycline-induced cardiotoxicity, and 2.5 µM was applied, as this concentration caused the most rapid onset of effects with subsequent stabilization of channel activity (Hanna et al., 2014a) and is within the range of clinically relevant concentrations (Gewirtz, 1999).

Data analysis has been described previously (Hanna et al., 2014a). For simplicity, data obtained with open probability (P_o of single channels measured using threshold discrimination) and fractional mean current (I/P_o, i.e., mean current divided by maximum current in records containing more than one channel) are combined in calculations of average P_o or as P_o, relative to the activity with 0.1 mM trans Ca\(^{2+}\). Since we did not observe any statistically significant differences between responses recorded at +40 and −40 mV, measurements at the two potentials were combined in the average data.

Ca\(^{2+}\) Binding Capacity. The Ca\(^{2+}\) binding capacity of CSQ2 was determined using a modified \(^{45}\)Ca\(^{2+}\) spin dialysis binding assay (Mitchell et al., 1988; Beard and Dulhunty, 2015). All procedures were undertaken at room temperature (23±2°C). In brief, 200 µg of CSQ2 was incubated at a concentration of 16 µg/ml in 150 mM NaCl, 20 mM MOPS, 1 mM CaCl\(_2\) (pH 7.4), and 2.5 µM dox or doxOL [controls received vehicle: dimethylsulfoxide (DMSO)] for 15 minutes and then centrifuged (without rotation) with either 100 mM Cs\(^{+}\) or 40 mM Ca\(^{2+}\) for 15 minutes. Unconjugated \(^{45}\)Ca\(^{2+}\) was removed by centrifugation of the samples in Microcon centrifugal filter concentrators (Merck, Bayswater, VIC, Australia) at 12,000g for 10 minutes. \(^{45}\)Ca\(^{2+}\) radioactivity of the CSQ2-\(^{45}\)Ca\(^{2+}\) retentate and of an unfiltered sample aliquot was counted using a Packard 1500 Tri-Carb liquid scintillation analyzer (Global Medical Instrumentation Inc., Anoka, MN). Data are presented as nmol \(^{45}\)Ca\(^{2+}\)/mg CSQ2.

Aggregation. Solution turbidity, which measures CSQ2 transition from soluble to insoluble forms (or aggregation), as a function of temperature (Mitchell et al., 1988; Valdes et al., 1996; Beard and Dulhunty, 2015). Three micromolar protein was suspended in a buffer (Valdes et al., 1996; Valle et al., 2008; Beard and Dulhunty, 2015). This micromolar protein was suspended in a buffer containing 20 mM Tris and 100 mM KCl, pH 7.4, with and without 2.5 µM dox or 2.5 µM doxOL (controls received DMSO vehicle). The absorbance (350 nm) was recorded after a series of small aliquots of Ca\(^{2+}\) were added (without rotation) with either 100 mM or 40 mM Ca\(^{2+}\) for 15 minutes. After each addition, the cuvette was stirred and allowed to equilibrate at room temperature for 7.5 minutes, after which the absorbance was recorded at 350 nm. Absorbance values were corrected for any change in absorbance due to buffer alone. Increased absorbance at 350 nm reflects the shift toward insoluble particles (aggregated protein) (Valdes et al., 1996; Valle et al., 2008; Beard and Dulhunty, 2015).

CSQ2 association with the RyR2 complex was tested using a CSQ2 association assay (Wei et al., 2006). All procedures were undertaken at room temperature (23±2°C). In brief, 200 µg of junctional face membrane was resuspended at 1.5 mg/ml in bilayer-like buffer containing 230 mM CsMS, 20 mM CsCl, 1 mM CaCl\(_2\), and 10 mM 2-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]amino]ethanesulfonic acid (TES) (pH 7.4) in the presence of protease inhibitors (1 mg/ml aprotinin, 1 mM benzamidine, 1 mg/ml leupeptin, and 1 mM peptatin A). The suspension was divided into six equivalent fractions and incubated with rotation for 45 minutes in 500 mM Cs\(^{+}\), 1 µM Ca\(^{2+}\) (by adding 1.5 mM BAPTA), 10 µM Ca\(^{2+}\) (by adding 1.1 mM BAPTA), 100 µM Ca\(^{2+}\) (by adding 0.9 mM BAPTA), or 2.5 µM doxOL. The sixth fraction served as a control. Final protein concentration in this incubation was ~1 mg/ml. A second series of experiments involved exposure to 2.5 µM doxOL for 0, 10, 20, 30, 45, and 60 minutes. Fractions were then placed in an Amicon Ultrafiltration cartridge (Merck) (100-kDa cutoff) and centrifuged following the manufacturer’s instruction (5000g for 30 minutes) to elicit dissociated/dispersified CSQ2 in the flow through and CSQ2-depleted junctional face membrane in the retentate. The retentate was washed three times in 250 µl of the bilayer-like buffer, sedimented as described earlier, and the CSQ2 content of the CSQ2-depleted junctional face membrane were analyzed by SDS-PAGE and Western blot.

Immunoprecipitation. CSQ2 associated with the RyR2 complex was also determined using a Pierce classic immunoprecipitation kit according to the manufacturer’s instructions, with the following changes. Two hundred microliters of SR vesicles were solubilized for 15 minutes on ice in immunoprecipitation buffer containing (mM) 1 Ca\(^{2+}\), 20 MOPS, 150 NaCl with 0.1% Triton X 100, 5% glycerol, and protease inhibitors (described earlier); final SR concentration was ~2 mg/ml. Solubilized SR vesicles were precleared by incubation with protein A/G sepharose at 4°C for 2 hours, and unbound proteins were removed via sedimentation. Precleared vesicles underwent solution exchange and dilution to ~1 mg/ml in bilayer-like buffer with either 500 mM Cs\(^{+}\), 1 µM Ca\(^{2+}\) (by adding 1.3 mM BAPTA), 10 µM Ca\(^{2+}\) (by adding 1.1 mM BAPTA), 100 µM Ca\(^{2+}\) (by adding 0.9 mM BAPTA), or 2.5 µM doxOL. Samples were incubated for ~14–16 hours at 4°C with anti-RyR 34C antibody–bound protein A/G sepharose and then washed five times with 200 µl of bilayer-like buffer. Samples were eluted by denaturation in 1 × BOLT LDL sample buffer at 60°C for 10 minutes, and samples were separated from protein A/G sepharose by centrifugation at 1000g for 1 minute.

Statistics. Data from Western blot experiments (Fig. 5; Supplemental Fig. 1) are presented as the mean ± S.E.M. Significance was tested using a two-way analysis of variance and Tukey’s post hoc test. Single-channel data, Ca\(^{2+}\) binding data, and turbidity are presented as the mean ± S.E.M. and significance was evaluated using Eqs. 1–4 and Supplemental Fig. 4 using a two-way analysis of variance and Bonferroni post hoc test. Single-channel data in Fig. 6 are presented as the mean ± S.E.M., and significance was evaluated using an unpaired Student’s t test. P < 0.05 was considered statistically significant.

Results. Anthracyclines Abolish the Response of RyR2 to Changes in Luminal [Ca\(^{2+}\)]. Previous reports show that native RyR2 responds to the changes in luminal [Ca\(^{2+}\)] that occur during the systolic/diastolic cycle, with RyR2 activity increasing as luminal Ca\(^{2+}\) is raised from an end systolic low of 0.1 mM to 1 or 1.5 mM (experienced at the end of diastole) (Belevych et al., 2009; Dulhunty et al., 2012; Hanna et al., 2014b) (Fig. 1A). We assessed the impact of anthracyclines on luminal Ca\(^{2+}\) sensitivity of RyR2 by treating channels with 2.5 µM trans doxOL prior to changing luminal [Ca\(^{2+}\)]. As expected, addition of trans 2.5 µM doxOL caused statistically significant channel activation that was followed by a statistically significant decline in RyR2 activity to a sustained level after ~10 minutes (Hanna et al., 2014a). After the sustained inhibition was observed, luminal [Ca\(^{2+}\)] decreased to 0.1 mM, then increased stepwise to 1.5 mM. Increasing luminal [Ca\(^{2+}\)] did not result in a statistically significant increase in RyR2 activity (Fig. 1B), in stark contrast to the increases in P_o observed in untreated (Dulhunty et al., 2012) or vehicle-treated (DMSO) RyR2 (Fig. 1, A, C, and D). These data indicate that, unexpectedly, exposure to doxOL abolishes the channel’s response to luminal Ca\(^{2+}\).

In the isolated lipid bilayer, there are a limited number of interactions that could modify RyR2 activity. Our earlier work demonstrated that doxOL oxidizes RyR2 thiols groups in addition to interacting via binding to RyR2 (Hanna et al., 2014a). This led us to investigate whether the abolition of luminal Ca\(^{2+}\) sensing by doxOL was caused by either oxidation of RyR2 thiols or altered doxOL binding to either RyR2 or an accessory protein.
Anthracycline Oxidation Does Not Mediate the Loss of Luminal Ca$^{2+}$ Response. To determine if doxOL-induced oxidation mediated the loss of RyR2 sensitivity to luminal Ca$^{2+}$, channels were exposed to 1 mM DTT before being treated with 2.5 μM doxOL. DoxOL is added to the trans chamber but, due its high lipid solubility, will cross the bilayer to the cis chamber. Earlier work showed that 1 mM DTT added to the cis chamber reliably protected channels from the drug-induced oxidation of RyR2 thiols and oxidation-induced change in channel activity (Hanna et al., 2014a,b). Our rationale was that, if doxOL abolished luminal Ca$^{2+}$ sensing via oxidation, protecting these thiols should prevent the loss of luminal Ca$^{2+}$ sensing following doxOL treatment.

DTT was added to the cis solution following channel incorporation, and activity was recorded for 5–6 minutes. Although adding this concentration of DTT does not alter RyR2 activity per se (Fig. 2, A and C; $P > 0.315$), it reduces RyR2 responses to luminal Ca$^{2+}$ (Hanna et al., 2014a), and previously published data are included here (Fig. 2D, black line) for comparison. After DTT addition, doxOL was added and activity was recorded until sustained activation was observed (~6–7 minutes) as a result of doxOL binding to the channel complex. This activation was sustained due to the absence of oxidation-induced RyR2 inhibition (Hanna et al., 2014a). The trans chamber was then perfused with a solution containing 2.5 μM doxOL and 0.1 mM Ca$^{2+}$, and luminal [Ca$^{2+}$] was incrementally increased to 1.5 mM. In the presence of DTT and doxOL, the sequential increases in trans [Ca$^{2+}$] had little effect on RyR2 activity, with no statistically significant difference in average P_o between any of the luminal Ca$^{2+}$ concentrations tested (Fig. 2, B and D; black dotted line, $P > 0.05$). Notably, doxOL-induced dampening of RyR2 response to luminal [Ca$^{2+}$] was no different in the presence and absence of DTT, suggesting that a mechanism other than thiol oxidation underlies doxOL-induced abolition of RyR2 luminal Ca$^{2+}$ sensing. Indeed, although DoxOL (similar to DTT) is a robust thiol-modifying agent, in the presence of DTT, doxOL is rendered incapable of modifying RyR2 thiols (Supplemental Fig. 1).

DoxOL Binding to CSQ2 Alters RyR2 Sensitivity to Luminal Ca$^{2+}$. There is considerable evidence illustrating that CSQ2 is a major luminal Ca$^{2+}$ sensor, communicating the level of luminal [Ca$^{2+}$] to RyR2 via its interactions with triadin and junctin (Györke et al., 2004; Qin et al., 2009; Dulhunty et al., 2012). DoxOL binds to CSQ2 (Kim et al., 2005), but not triadin and junctin (Supplemental Fig. 2) (Kim et al., 2005); therefore, it is plausible that doxOL binding to CSQ2 may contribute to the abolition of normal RyR2 luminal Ca$^{2+}$ sensitivity by doxOL.

If the doxOL-induced dampening of Ca$^{2+}$ sensitivity is mediated by CSQ2 dissociation from RyR2, it follows that [Ca$^{2+}$] was sequentially increased to 0.5, 1, and then 1.5 mM. Individual P_o values are listed below the trace. (C) Average data for P_o measured in the presence (black line) or absence (gray line; vehicle) of 2.5 μM doxOL. (D) Average data for P_o relative to activity measured with 0.1 mM trans Ca$^{2+}$ with vehicle (gray line) or 2.5 μM doxOL (black line). *Average data with a statistically significant difference from baseline activity recorded with 0.1 mM trans Ca$^{2+}$; #average data with a statistically significant difference from activity recorded in the absence of doxOL at the same [Ca$^{2+}$] ($P < 0.05$). Graphs in (C) and (D) show the mean ± S.E.M.; $n = 17–24$. All channels were exposed to changes in luminal [Ca$^{2+}$].
Supplemental Fig. 3, A and C). Of note, the relative 1.0 mM (physiologic resting luminal [Ca^2+] tested. As described earlier, sustained doxOL inhibition was because the interaction of CSQ with junctin/triadin is stronger terminal CSQ1 monomer likely remains associated with RyR1 (Fig. 3A; 0.05). Therefore, in the absence of CSQ2, RyR2 is more sensitive to luminal Ca^2+ when Ca^2+ is lower (Shin et al., 2000). In contrast, with high ionic strength (500 mM Cs^+). CSQ1 depolymerizes in low Ca^2+, but a terminal CSQ1 monomer likely remains associated with RyR1 because the interaction of CSQ with junctin/triadin is stronger when Ca^2+ is lower (Shin et al., 2000). In contrast, with high ionic strength, CSQ monomers become supercompacted and fully dissociate from the RyR1 complex (Wei et al., 2009b). Observations with RyR2 suggest that a similar sequence of events occur in the cardiac preparation (Wei et al., 2009b).

Fully dissociating CSQ2 from the channels [with 500 mM trans Cs^+, CSQ(−)RyR2] resulted in an augmented sensitivity to luminal Ca^2+, with relative P_o being higher than native channels [CSQ(+)RyR2] at all [Ca^2+] (Fig. 3A; P < 0.05; Supplemental Fig. 3, A and C). Of note, the relative P_o at 1.0 mM (physiologic resting luminal [Ca^2+]) was 4.4-fold ± 0.66-fold greater than activity with 0.1 mM luminal Ca^2+ (Fig. 3A; P < 0.05). Therefore, in the absence of CSQ2, RyR2 is more sensitive to luminal Ca^2+, confirming CSQ2’s ability to influence the luminal Ca^2+ response of RyR2 (Györke et al., 2004; Dulhunty et al., 2012). In a second series of experiments, channels were exposed to 2.5 μM doxOL before and during CSQ2 dissociation, and the response to luminal Ca^2+ was tested. As described earlier, sustained doxOL inhibition was established before CSQ2 was dissociated and the trans chamber perfused with the 250 mM Cs^+, 0.1 mM Ca^2+ solution. In marked contrast to the results with CSQ2(+) RyR2 (Fig. 1; Fig. 3A), the responses of CSQ(−)RyR2 to luminal Ca^2+ were essentially identical in the presence and absence of doxOL, with no statistically significant difference recorded at any [Ca^2+] between 0.1 and 1.5 mM (Fig. 3A). To ensure the differences observed in CSQ(−)RyR2 and native CSQ(+)CSQ2 were due to the removal of CSQ2, we undertook a final set of experiments. CSQ2 was dissociated from the channel by exposure to high Cs^+, and then removed from the bath by trans chamber perfusion. Exogenous CSQ2 (16 μg/ml) was then added to the trans chamber. After CSQ2 reassoci- ation was observed (indicated by a sustained increase in RyR2 activity), the response to luminal Ca^2+ was tested. Reassociation of CSQ2 to CSQ2(−)RyR2 resulted in a modest sensitivity to luminal Ca^2+ (Fig. 3B; Supplemental Fig. 3), reminiscent of the degree of sensitivity observed in native RyR2 [compare CSQ(+)RyR2 in Fig. 3A and RyR-reassociated CSQ (RyR + reassociated CSQ) in Fig. 3B]. In the presence of doxOL, CSQ-reassociated RyR2 was insensitive to changes in luminal Ca^2+ in a near identical manner to native RyR2 (Fig. 3B; Supplemental Fig. 3). Taken together, these results provide compelling evidence that CSQ2 plays the primary role in the loss of RyR2 luminal Ca^2+ sensing caused by acute application of doxOL.

Effects of doxOL on CSQ2 Properties. The results in Fig. 3 raise the question of how doxOL modifies the CSQ2/RyR2 interaction to produce a dramatic reduction in the luminal Ca^2+ sensitivity of RyR2. It is clear from the
strong response of CSQ2(−)RyR2 to luminal Ca^{2+} that the effect of doxOL is unlikely to be due to stripping CSQ2 from the RyR2/triadin/junctin complex in the same way as exposure to high ionic strength (i.e., by CSQ2 supercompaction). CSQ2’s ability to communicate Ca^{2+} store load to RyR2 is due to both its ability to bind or buffer Ca^{2+} (Park et al., 2003), and its Ca^{2+}-dependent polymer structure (Lee et al., 2012). Dox is proposed to bind to a site on CSQ2 that interferes with CSQ2 polymerization and lowers the Ca^{2+} binding capacity of the protein (Charlier et al., 2005; Kim et al., 2005; Park et al., 2005). Therefore, we hypothesized that doxOL application would reduce CSQ2 polymerization and Ca^{2+} binding capacity, as occurs with exposure to low Ca^{2+} solutions (Wei et al., 2009b), and that this effect alters CSQ2 regulation of RyR2.

To explore these possibilities, we first determined the Ca^{2+} binding capacity of CSQ2 as a function of [Ca^{2+}] in the presence and absence of dox and doxOL using a ^{45}Ca^{2+} binding assay. In the absence of anthracyclines, the Ca^{2+} binding capacity of CSQ2 increased as [Ca^{2+}] was increased from 0.1 to 1.5 mM (Fig. 4A), as expected (Mitchell et al., 1988; Park et al., 2004). CSQ2’s Ca^{2+}-dependent Ca^{2+} binding capacity was markedly different when it was incubated with either 2.5 μM dox or doxOL. Although there were no statistically significant changes observed at 0.1 mM Ca^{2+}, there was a statistically significant blunting of CSQ2 Ca^{2+} binding capacity at 0.5–1.5 mM Ca^{2+} (Fig. 4A). At 1.5 mM Ca^{2+}, the effects of dox and doxOL were the most extreme, reducing Ca^{2+} binding to CSQ2 by 66% ± 9% and 45% ± 13% (respectively) of that found in the absence of anthracycline.

Ca^{2+} binding capacity is dependent on CSQ2 structure and increases upon CSQ2 polymerization (Park et al., 2004). Given that dox and doxOL reduced Ca^{2+} binding to CSQ2 (Fig. 4A) and dox can inhibit CSQ2 polymerization (Charlier et al., 2005; Kang et al., 2010), it follows that doxOL would also reduce CSQ2 ability to assemble into an aggregated polymer. CSQ2 aggregation can be measured as turbidity (absorbance at 350 nm), which indicates protein transition from soluble to insoluble forms, with increasing turbidity reflecting a higher proportion of insoluble particles in a sample. In the absence of anthracycline, CSQ2 turbidity increased with increasing [Ca^{2+}], reaching a plateau after 1.5 mM Ca^{2+} (Fig. 4B). Incubation in doxOL (2.5 μM) yielded a statistically significant 44% ± 8% to 58% ± 13% decrease in absorbance at 0.5–3 mM Ca^{2+} (Fig. 4B), disrupting the degree of Ca^{2+}-induced CSQ2 aggregation and indicative of a disruption in CSQ2’s capacity for polymerization. The presence of dox resulted in 77% ± 5%, 69% ± 7%, and 73% ± 10% decreases in absorbance at 0.5, 1.5, and 2.0 mM Ca^{2+}, respectively (P < 0.05). The decrease in CSQ2 aggregation with doxOL was statistically significantly greater than that with dox at all Ca^{2+} concentrations ≥ 1.5 mM. Taken together, these data illustrate that anthracyclines alter both the Ca^{2+} binding capacity and Ca^{2+}-induced aggregation of CSQ2, with doxOL producing the stronger effects.

Fig. 3. CSQ2 dissociation restores luminal Ca^{2+} sensing in the presence of doxOL. (A) Average data (mean ± S.E.M) for relative P_o in CSQ2-dissociated channels [CSQ(−), black lines] in the absence (filled circle) or presence (filled triangle) of 2.5 μM doxOL. All channels were exposed to changes in luminal [Ca^{2+}]. The responses of all native channels to increasing trans Ca^{2+} in the presence and absence of 2.5 μM doxOL (gray lines) are included for comparison. *Average data with a statistically significant difference from baseline activity with 0.1 mM trans Ca^{2+} in doxOL-treated CSQ2(−) channels; #average data of doxOL-treated native channels (P < 0.05; n = 7–10). (B) In these data, native RyR2 have been subjected to a 500 mM Ca^{2+} wash (to dissociate CSQ2) and chamber perfusion (to remove dissociated CSQ) and have been incubated in 16 μM CSQ2, after which CSQ2 reassociated (Reass) with the RyR2 complex (RyR + Reass CSQ2). Average data for P_o relative to activity measured with 0.1 mM trans Ca^{2+}, measured in the presence (gray triangle) or absence (gray circle; vehicle) of 2.5 μM doxOL. *Average data with a statistically significant difference from baseline activity recorded with 0.1 mM trans Ca^{2+}; #average data with a statistically significant difference from activity recorded in the absence of doxOL at the same [Ca^{2+}](P < 0.05; n = 10). All channels were exposed to changes in luminal [Ca^{2+}].
Do Anthracyclines Promote Loss of CSQ2 from the RyR2 Complex? To determine how these dox/doxOL-induced changes in CSQ2’s Ca\(^{2+}\) binding capacity and aggregation affected CSQ2 association with RyR2, we exposed the RyR2 Complex? To determine how these dox/doxOL-induced changes in CSQ2’s Ca\(^{2+}\) binding capacity and aggregation affected CSQ2 association with RyR2, we exposed the RyR2 Complex? To determine how these dox/doxOL-induced changes in CSQ2’s Ca\(^{2+}\) binding capacity and aggregation affected CSQ2 association with RyR2, we exposed

![Graph showing Ca\(^{2+}\) binding capacity and aggregation](image)

Fig. 4. Doxorubicin and doxOL reduce CSQ2 Ca\(^{2+}\) binding capacity and CSQ2 aggregation. (A) The \(^{45}\)Ca\(^{2+}\) binding in a spin dialysis binding assay was carried out using 200 μg protein (at a concentration of 1 mg/ml) in 150 mM NaCl, 20 mM MOPS, 100 μM to 3 mM CaCl\(_2\), and 2.6 kBq \(^{45}\)Ca\(^{2+}\). Each data point is the mean \(^{45}\)Ca\(^{2+}\) bound (in nmol Ca\(^{2+}\)/mg CSQ), and the bars indicate ±S.E.M. at [Ca\(^{2+}\)] from 0 to 1.5 mM Ca\(^{2+}\). *Statistically significant difference in average data from that of CSQ2 in the presence of vehicle (milliQ water; Millipore, Billerica, MA) at the same [Ca\(^{2+}\)]; §statistically significant difference in average data from that of CSQ2 in the presence of doxOL at the same [Ca\(^{2+}\)] (P < 0.05; n = 5–9). (B) CSQ turbidity, an indicator of polymerization and aggregation, is measured as absorbance at 350 nm. Experiments were carried out in a buffer containing 20 mM MOPS, 100 mM KCl, and 0–3 mM CaCl\(_2\). Data are presented as the mean ± S.E.M. for each condition. *Statistically significant difference in average data from that of CSQ2 in the presence of vehicle at the same [Ca\(^{2+}\)] (P < 0.05; n = 5–9). od, optical density.

Sensitivity.

Exposure to Low Luminal Ca\(^{2+}\) Abolishes Native RyR2 Luminal Ca\(^{2+}\) Sensitivity. The previously obtained results (Fig. 5, A and B) are consistent with long-term doxOL exposure inducing CSQ2 depolymerization, in a very similar manner to low Ca\(^{2+}\) treatment, which causes CSQ2 unfolding and depolymerization (Park et al., 2003), but likely leaves partially unfolded CSQ2 bound to triadin/junctin and associated with RyR2 (Wei et al., 2009b).
In assessing the effects of dox and doxOL on CSQ2 structure and function, it became evident that exposure to low luminal Ca\(^{2+}\) concentrations (≤100 μM) had a similar effect to doxOL (Fig. 4, A and B), severely decreasing CSQ2 Ca\(^{2+}\) binding capacity and CSQ2 aggregation. This is in contrast to exposure to 500 mM Ca\(^{2+}\) that causes CSQ2 supercompaction and the consequent dissociation of monomers from the RyR2 complex (Wei et al., 2009b). Therefore, we compared the amounts of CSQ2 associated with RyR2 after 45-minute incubation in doxOL (Fig. 5, A and B), 500 mM Cs\(^{+}\), and low Ca\(^{2+}\) solutions (Fig. 5, C and D). As predicted, based on our previous results with RyR1/CSQ1 (Wei et al., 2009b), the amount of CSQ2 removed from RyR2 with 500 mM Cs\(^{+}\) was larger and statistically significant compared to that removed by treatment with low Ca\(^{2+}\).

It was surprising, however, that ∼13% of the CSQ2 remained associated with RyR2 after exposure to 500 mM Cs\(^{+}\), although this was still less than the 41% ± 4% to 51% ± 5% (P < 0.05) remaining associated after exposure to low Ca\(^{2+}\). Low Ca\(^{2+}\) (1 μM) caused a dissociation of CSQ2 almost identical to a 45-minute doxOL exposure (Fig. 5D). Anti-RyR2 coimmunoprecipitation of junctional face membrane yielded very similar results under near identical experimental conditions (n = 3, data not shown), confirming that the CSQ2 appearing in the Western blots of SR vesicles was indeed bound to the RyR2 complex. These results are consistent with the postulate that doxOL, similar to exposure to low luminal (Ca\(^{2+}\)), depolymerizes CSQ2. Thus, low luminal (Ca\(^{2+}\)) removes a statistically significant fraction of CSQ2 from the RyR2 complex but leaves terminal monomers (and perhaps dimers) associated with RyR2 and the junctional face membrane (Charlier et al., 2005; Wei et al., 2009b; Kang et al., 2010).

Exposure to Low Luminal Ca\(^{2+}\) (with CSQ2 Depolymerization) Has Comparable Effects on RyR2 Luminal Ca\(^{2+}\) Sensitivity to doxOL. Since low Ca\(^{2+}\) concentrations have a similar effect on CSQ2 characteristics and association with RyR2 to doxOL, we decided to test whether the effects of the two treatments on luminal Ca\(^{2+}\) sensitivity were also comparable. The specific effect of exposing RyR2 to low luminal Ca\(^{2+}\) in the 1–10 μM range on the response of channels to subsequent changes in the physiologic range of luminal Ca\(^{2+}\) (0.1–1.5 mM) has not previously been examined in channels incorporated into bilayers. Therefore, following incorporation and control channel recording, we exposed RyR2 channels to 1 mM luminal Ca\(^{2+}\) for 5–6 minutes and then increased luminal Ca\(^{2+}\) to 0.1 mM, followed by stepwise increments to 1.5 mM Ca\(^{2+}\) as described earlier. An expected consequence of lowering luminal Ca\(^{2+}\) from 1 mM to the RyR2 complex. (A) After SDS-PAGE and Western blot, the blots were probed with antibodies to RyR2 (top) and to CSQ2 (bottom). Incubation times are shown for each lane. (B) Relative (Rel) association of CSQ2 with RyR2. Band densities of target protein (CSQ2) are normalized to RyR2 in each lane and expressed relative to normalized band densities in the absence of doxOL (0 minutes). Data are presented as the mean ± S.E.M. for each condition; *average data with a statistically significant difference (P < 0.05; n = 6) from the 0-minute incubation. (C and D) Repeat of (A) and (B) after incubation for 45 minutes in bilayer-like buffer under conditions listed below each lane. Lane 1 is a control experiment (doxOL vehicle (veh): DMSO). Band densities of target protein (CSQ2) are normalized to RyR2 in each lane and expressed relative to normalized band densities in the presence of vehicle. Data are presented as the mean ± S.E.M. for each condition; *average data with a statistically significant difference from those in the presence of vehicle (P < 0.05; n = 6).
1 μM was the immediate increase in conductance as pore block by Ca\(^{2+}\) was removed (Fig. 6A). An unexpected effect was the immediate increase in channel activity with a statistically significant 2- to 3-fold increase in both \(P_o\) and channel open duration (\(T_o\)) (Fig. 6B). There were no further consistent changes in channel activity with the subsequent increase in luminal Ca\(^{2+}\) to 0.1 mM and step increases to 1.5 mM, and in fact, the trend was toward a decline in activity at 1 and 1.5 mM luminal Ca\(^{2+}\). Similar to exposure to doxOL (Fig. 2), initial exposure to 1 μM luminal Ca\(^{2+}\) abolished RyR2 sensitivity to luminal Ca\(^{2+}\) within the 0.1–1.0 mM range (Fig. 6). The effect of exposure to low luminal Ca\(^{2+}\) on the RyR2 response to changing luminal Ca\(^{2+}\) within this physiologic range is markedly different from the effect of exposure to high ionic strength (500 mM Cs\(^+\)) in increasing sensitivity to luminal Ca\(^{2+}\) (Fig. 3).

It is notable that a failure of channels to respond to increasing luminal Ca\(^{2+}\) through the relatively narrow physiologic range of 0.1–1.0 mM following exposure to subphysiologic luminal Ca\(^{2+}\) (i.e., 1.0 μM luminal Ca\(^{2+}\) in Fig. 6, A and B) is reminiscent of previous results. Recombinant RyR2 channels lacking CSQ2, triadin, or junctin (Sitsapesan and Williams, 1995; Chen et al., 2014) responded with a dramatic increase (i.e., 1000-fold) as luminal Ca\(^{2+}\) was increased from 1 nM to 50 or 100 μM, but did not increase further with further increases in luminal \([Ca^{2+}]\). In RyR2 incorporated into bilayers using \(\text{trans}\) solutions either lacking luminal Ca\(^{2+}\) or containing nanomolar concentrations of Ca\(^{2+}\), there is in fact a

Fig. 6. Effect of low luminal Ca\(^{2+}\) pretreatment on RyR2 luminal Ca\(^{2+}\) sensitivity. Native RyR2 incorporated into lipid bilayers in the presence of 1 mM luminal \((\text{trans})\) Ca\(^{2+}\) with cytoplasmic Ca\(^{2+}\) held constant at 1 μM. After control recording, \(\text{trans}\) Ca\(^{2+}\) was lowered to 1 μM for 5–6 minutes before being adjusted to 0.1 mM and then increased in steps to 1.5 mM as indicated. (A) Single-channel recordings at −40 mV at each \(\text{trans}[Ca^{2+}]\) indicated. Channel opening is down from the closed (solid line, c) to the maximum current (broken line, o) levels. (B) Graphs show the mean ± S.E.M. for average data (\(n = 20\)) for \(P_o\) (upper), open duration (\(T_o\); middle), and closed duration (\(T_c\); lower) under each condition as indicated. All channels were exposed to changes in luminal \([Ca^{2+}]\). *Average data with a statistically significant difference from activity recorded with 1 mM \(\text{trans}\) Ca\(^{2+}\) (\(P < 0.05\)).
decline in activity with further increases to ≥1 mM [Ca^{2+}] (Laver, 2007; Walweel et al., 2014).

Discussion

Overview. In this paper, we present important and novel findings regarding the effects of doxOL on cardiac SR Ca^{2+} handling. The principle findings are first, and unexpectedly, that doxOL abolishes the luminal Ca^{2+} sensitivity of RyR2 within the physiologic range of luminal Ca^{2+} concentrations. Second, this loss of sensitivity is mediated by a direct effect of doxOL on CSQ2, and not via doxOL-induced oxidation of RyR2 or doxOL binding to RyR2. Third, doxOL reduces CSQ2 Ca^{2+} binding affinity and its ability to aggregate and likely form polymers, thereby reducing amounts of CSQ2 bound to the RyR2 complex. Finally, the effect of doxOL on CSQ2 is comparable to exposing RyR2 to Ca^{2+} concentrations (≥100 μM) in that both prevent CSQ2 aggregation and abolish RyR2 sensitivity to changes in luminal [Ca^{2+}] in the 0.1–1.5 mM range.

Anthracyclines Abolish RyR2 Luminal Ca^{2+} Sensing within the Physiologic Range of Luminal [Ca^{2+}]. The sensitivity of RyR2 to activation by luminal Ca^{2+} is an area of intense study, due to its purported role in heart failure, CPVT, and atrial fibrillation (Park et al., 2003; Kim et al., 2005; Wei et al., 2006; Belevych et al., 2009; Stevens et al., 2009). These conditions are associated with changes in Ca^{2+} handling in cardiomyocytes, including increased diastolic Ca^{2+} leak and generation of spontaneous Ca^{2+} waves. The leak is thought to result from an increased sensitivity of RyR2 to activation by luminal Ca^{2+} during diastole. Although the cause of heightened sensitivity is controversial, enhanced oxidation is thought to be important. Since anthracyclines are powerful oxidizing agents and induce phenotypic effects similar to the arrhythmogenic cardiac conditions, it follows that doxOL could enhance the response of RyR2 to luminal Ca^{2+}. That doxOL actually abolished the luminal Ca^{2+} sensitivity of RyR2 within the physiologic range of luminal [Ca^{2+}] was, therefore, unexpected.

RyR2 Oxidation by doxOL Does Not Mediate Drug-Induced Loss of Luminal Ca^{2+} Sensing. The failure of DTT to restore the normal Ca^{2+} response ruled out doxOL-induced oxidation in mediating the loss of luminal Ca^{2+} sensitivity. DTT blocked the inhibitory effects of doxOL-induced RyR2 oxidation on channel activity at a constant luminal [Ca^{2+}] of 1 mM (Hanna et al., 2014a) and would presumably prevent other functional effects that depended on doxOL modification of these thiols. Thus, we can infer that the oxidative effects of doxOL are separate from its ability to modulate luminal Ca^{2+} sensing.

CSQ2 Dissociation Restores Luminal Ca^{2+} Sensing to doxOL-Treated RyR2. Since oxidation did not mediate doxOL-induced abolition of luminal Ca^{2+} sensitivity, we hypothesized that doxOL acted by binding to either RyR2 or CSQ2, since both proteins are doxOL binding targets (Saeki et al., 2002; Park et al., 2005). The contribution of CSQ2 was validated when CSQ2 removal by exposure to 500 mM Cs^{+} restored luminal Ca^{2+} sensing to levels similar to those observed in the absence of doxOL (i.e., in CSQ2-stripped RyR2). As doxOL was present in all solutions after CSQ2 dissociation, doxOL binding to RyR2 could not have been responsible for removing luminal Ca^{2+} sensitivity.

The role of CSQ2 in luminal Ca^{2+} sensing by RyR2 is controversial. CSQ2 is important in SR Ca^{2+} handling, acting as an SR Ca^{2+} buffer and communicating SR store load to RyR2, likely via anchoring proteins triadin and/or junctin (Györke et al., 2004; Wei et al., 2006; Qin et al., 2009; Stevens et al., 2009). However, CSQ2 dissociation experiments in the absence of doxOL suggest that, whereas CSQ2 modifies the channel’s response to luminal Ca^{2+}, RyR2 possesses an innate sensitivity to luminal Ca^{2+}. This is supported by studies in CSQ2 knockout mice where a response to changes in SR load is preserved despite the absence of CSQ2 (Knollmann et al., 2006). Innate RyR2 luminal Ca^{2+} sensitivity is observed in purified RyR2 (Sitsapesan and Williams, 1995) and was found to depend on RyR2 E4872 in the membrane-spanning helical bundle (Chen et al., 2014). However, an innate Ca^{2+} sensitivity does not preclude a role for other factors (such as CSQ2) in modifying RyR2 response to luminal Ca^{2+} changes. Purified RyR2 luminal Ca^{2+} sensitivity is strongest between 10 nM and 0.1 mM luminal [Ca^{2+}] and appears to saturate in the physiologic range between 0.1 and 1 mM (Chen et al., 2014). Our results suggest that considerable Ca^{2+} sensitivity in this range in native channels depends on the normal association of regulatory proteins, including CSQ2 polymers, with RyR2.

That CSQ2 is necessary for normal RyR2 luminal Ca^{2+} sensitivity is highlighted in studies on the CPVT-linked CSQ2 mutant L167H, which reduced Ca^{2+} binding capacity and abolished luminal Ca^{2+} sensing by RyR2, and CSQ2 Ca^{2+}-dependent polymerization (di Barletta et al., 2006; Qin et al., 2008). The authors attributed this loss of response to a change in the interaction between CSQ2 and triadin. Anthracycline binding to CSQ2 also lowers CSQ2 Ca^{2+} storage capacity and inhibits Ca^{2+}-dependent polymerization of CSQ2 (this study and Charlier et al. (2005) and Kang et al. (2010)), which would reduce polymerization and the amount of CSQ2 bound to junctin/triadin. Interestingly, doxOL treatment partially depleted RyR2 of CSQ2; approximately 40% of native CSQ2 remained bound to the channel, likely in monomer or dimer formation. The residual CSQ2 bound to RyR2 imparted a very different functional effect on the channel compared to polymerized CSQ2, and instead was comparable to exposure to low luminal [Ca^{2+}]. Both low luminal Ca^{2+} and doxOL reduced CSQ2 Ca^{2+} binding capacity and aggregation, and blunted the ability of RyR2 to respond to subsequent changes in luminal [Ca^{2+}] in the physiologic range. We propose that, similar to low (≤1 μM) luminal Ca^{2+}, long-term doxOL exposure depolymerizes CSQ2 and, as a result, reduces the luminal Ca^{2+} sensitivity of the channel in the 0.1–1.5 mM range. This was observed in channels exposed to doxOL for 30 or more minutes, yet this exposure time was not sufficient to remove a statistically significant fraction of CSQ2 from RyR2 in the CSQ2 association and RyR2 coimmunoprecipitation experiments. Thus, we postulate that CSQ2 depolymerization proceeds more rapidly in the bilayer situation.

Implications for Effects of doxOL in the Intact Cell. It is difficult to predict how the loss of luminal Ca^{2+} sensing caused by doxOL in single channels would translate to the whole cell. The results indicate that doxOL could effectively block RyR2 luminal Ca^{2+} sensitivity in a cellular environment. Whereas whole-cell studies confirm an increase in luminal Ca^{2+} sensitivity in gain-of-function arrhythmogenic heart models (Guo et al., 2007), few studies that have quantified such changes in loss-of-function situations. In one
example, RyR2 channels carrying a mutation associated with catecholaminergic idiopathic ventricular fibrillation lost the ability to respond to activation by luminal Ca$^{2+}$ (Jiang et al., 2006). Implications for Ca$^{2+}$ sensitivity of the ryanodine receptor channel activity and cardiac output. Clin Exp Pharmacol Physiol 35:477–484.

Shan J, Xin W, Beteshauer M, Reiken S, Chen BX, Wronska A, and Marks AR (2012) Calcium leak through ryanodine receptors leads to atrial fibrillation in

Address correspondence to: Dr. Nicole A. Beard, Health Research Institute and Faculty of Education, Science, Technology and Maths, University of Canberra, Canberra, ACT 2611, Australia. E-mail: nicole.beard@canberra.edu.au