Diminazene Is a Slow Pore Blocker of Acid-Sensing Ion Channel 1a (ASIC1a)

Axel Schmidt, Giulia Rossetti, Sylvia Joussen, and Stefan Gründer

Institute of Physiology (A.S., S.J., S.G.), and Department of Oncology, Hematology and Stem Cell Transplantation (G.R.), RWTH Aachen University, Aachen, Germany; and Computational Biomedicine – Institute for Advanced Simulation/Institute of Neuroscience and Medicine, and Jülich Supercomputing Centre, Jülich, Germany (G.R.)

Received July 26, 2017; accepted October 10, 2017

ABSTRACT

Acid-sensing ion channels (ASICs) are ligand-gated Na⁺ channels that are opened by extracellular protons. They contribute to the excitatory postsynaptic current and to the detection of painful acidosis. Moreover, they are activated during peripheral inflammation and acidosis associated with various neuronal disorders, such as stroke and neuroinflammation, rendering them interesting drug targets. Diminazene aceturate is a small-molecule inhibitor of ASICs with a reported apparent affinity in the low micromolar range, making it an interesting lead compound. It was reported that diminazene slowly blocks ASIC1a, leading to the apparent acceleration of desensitization and underestimating its potency; we show that diminazene indeed has a submicromolar potency at ASIC1a (IC₅₀ 0.3 μM). Moreover, we show that the inhibition is voltage-dependent and competes with that by amiloride, a pore blocker of ASICs. Finally, we identify by molecular docking a binding site in the ion pore that we confirm by site-directed mutagenesis. In summary, our results show that diminazene blocks ASIC1a by a slow open-channel block and suggest that diminazene is an interesting lead compound for high-affinity blockers of ASICs.

Introduction

Acid-sensing ion channels (ASICs) are ligand-gated Na⁺ channels that are opened by extracellular protons (Waldmann et al., 1997; Gründer and Pusch, 2015). They are members of the DEG/ENaC gene family and related to the epithelial Na⁺ channel (ENaC) (Kellenberger and Schild, 2015). In rodents and humans, four ASIC genes encode six major subunits, ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, and ASIC4, which form different homo- and heteromeric channels. Crystallization of chicken ASIC1 and single-molecule imaging revealed that ASICs assemble as trimers (Jasti et al., 2007; Bartoi et al., 2014). They have a topology with two transmembrane domains (TMDs), intracellular termini and a large extracellular domain (ECD) (Saugstad et al., 2004), that folds in a complicated three-dimensional structure, which has been compared with a clenched hand (Jasti et al., 2007). The pore is mainly lined by TMD2 (Li et al., 2011; Baconguis et al., 2014).

ASICs are present in virtually every neuron. In the central nervous system (CNS), the main ASICs are homomeric ASIC1a and heteromeric ASIC1a2a (Baron et al., 2002; Askwith et al., 2004; Vukicevic and Kellenberger, 2004; Wu et al., 2004) and ASIC1a2b (Sherwood et al., 2011). ASIC1a is essential for the formation of highly proton-sensitive ASICs in the CNS. In the peripheral nervous system (PNS), all ASIC subunits, except ASIC4, are expressed (Gründer et al., 2000). In the CNS, protons act as a neurotransmitter in synaptic transmission, and activation of ASICs makes a small contribution to the excitatory postsynaptic current (Du et al., 2014; Kreple et al., 2014; González-Inchauspe et al., 2017). In the CNS, ASICs contribute to the detection of metabolic and painful acidosis (Molliver et al., 2005; Deval et al., 2008; Diochot et al., 2012; Deval and Lingueglia, 2015).

It is also increasingly recognized that ASICs make important contributions to different pathophysiological states (Wemmie et al., 2013; Huang et al., 2015). For example, ASICs are activated during ischemia associated with stroke, increasing neurodegeneration (Xiong et al., 2004; McCarthy et al., 2015; Chassagnon et al., 2017). Moreover, ASICs contribute to axonal degeneration in an animal model of neuroinflammation (Friese et al., 2007). In the PNS, ASICs contribute to inflammatory and neuropathic pain.
bonds to a binding site within the ion pore of open ASIC1a. We found that diminazene slowly analyzed in detail the mechanism of block by diminazene and diminazene on ASICs (Chen et al., 2010a). In this study, we benefit from the molecular identification of the binding site of design of new ASIC inhibitors. Such an approach would greatly ASICs, it is an interesting lead compound for the rational study. However, since control traces were similarly affected, this does not influence the results of the experiment. The holding potential was ~70 mV, and currents were digitized at 200 Hz, if not stated otherwise. Bath solutions contained the following (in millimolars): 140 NaCl, 10 HEPES, 1.8 CaCl₂, and 1 MgCl₂ (pH was adjusted with NaOH); 4-morpholineethanesulfonic acid (MES) replaced HEPES for pH < 6.6. Diminazene acetate or amiloride hydrochloride was added to the bath solution as indicated. A solution with conditioning traces in Fig. 2. However, since control traces were similarly affected, this does not influence the results of the experiment. The holding potential was ~70 mV, and currents were digitized at 200 Hz, if not stated otherwise. Bath solutions contained the following (in millimolars): 140 NaCl, 10 HEPES, 1.8 CaCl₂, and 1 MgCl₂ (pH was adjusted with NaOH); 4-morpholineethanesulfonic acid (MES) replaced HEPES for pH < 6.6. Diminazene acetate or amiloride hydrochloride was added to the bath solution as indicated. A solution with conditioning pH 7.4 was applied for 60 seconds prior to each activation. For all experiments, oocytes from at least two different frogs were used. **Data Analysis.** Electrophysiological data were displayed in Cellworks Reader (version 3.7; npi electronic) and quantified in either Cellworks Reader or Igor Pro (version 5.0.3; WaveMetrics, Lake Oswego, OR). Subsequent statistical analysis was performed in Excel (Microsoft, Redmond, WA). Results are reported as the mean ± S.E.M. Student’s paired or unpaired t test, as appropriate, was used to determine P values. When multiple tests were conducted on the same data set, we used the Bonferroni correction, multiplying individual P values by the number of tests. Graphs and electrophysiological traces were plotted with Igor Pro. **Concentration-response curves were fit by a Hill function:**

\[I_x = I_0 \left(\frac{1 + [x]/K_i}{1 + [x]/K_i} \right)^H \]

where \(I_x \) represents the current at a given concentration of inhibitor \(x \), \(I_0 \) is the current in the absence of inhibitor, \([x]\) is the concentration of the inhibitor \(x \), \(K_i \) is the concentration at which 50% of the current was inhibited (apparent inhibitor constant), and \(H \) is the Hill coefficient. Values for \(K_i \) and \(H \) indicated in the text are means ± S.E.M. of individual measurements. Fits depicted in figures were fit to the data points plotted with \(I_0 \) fixed to 1, for comparability. Hill coefficients 1 second postpeak were close to 1 (1.23 ± 0.06 for diminazene and 1.07 ± 0.04 for amiloride; see “Results,” Fig. 3). To estimate \(K_i \) at different holding potentials, we therefore fixed \(H \) to 1 and used a simplified Hill equation:

\[K_i = [x]I_0/(I_0 - I_x) \]

Apparent inhibitor constants \(K_i \) at different holding potentials were subsequently fit by the Woodhull model of channel block (Woodhull, 1973):

\[K_i(V) = K_i(0 \text{ mV}) \exp(-z'FV/R_\text{T}) \]

where \(V \) represents the membrane potential, \(K_i \) (0 mV) is the inhibitory constant at 0 mV, \(F \) is the Faraday constant, \(R \) is the gas constant, \(T \) is the absolute temperature, and \(z' \) is the product of the valence of the inhibitor and the fraction of the membrane potential (\(\delta \) acting on the inhibitor. Thus, for diminazene, \(\delta \) can be calculated by \(\delta = z'/2 \), and by \(\delta = z' \) for amiloride.

Time constants of current decay (\(\tau \)) were determined by fitting current traces with an exponential function using Igor Pro:

\[I(t) = I_0 + A e^{-t/\tau} \]

where \(I(t) \) represents the current at time \(t \), \(I_0 \) is the basal current, and \(A \) is the amplitude of the desensitizing current component.
Homology Modeling and Molecular Docking. Rat ASIC1a homology models were built with MODELLER 9.16 (Andrey Sali; https://salilab.org/modeller/) (Sali and Blundell, 1993) based on the crystal structure of the chicken ASIC1 open conformation (Protein Data Bank: 4NTW) (Baconguis et al., 2014). The two sequences have 89.6% of identity and 94.6% of similarity along the overall structure, and they are identical in the considered binding site according to Needle Pairwise Sequence Alignment of the Emboss Web server (http://www.ebi.ac.uk/Tools/psa/emboss_needle/). The best out of 500 models was selected based on the discrete optimized protein energy scoring function (Shen and Sali, 2006) with a stereochemical quality of 98% of residues in the favored region of the Ramachandran plot (Lovell et al., 2003).

Diminazene and amiloride were structurally preprocessed using LigPrep from the Schrödinger Suite (Schrödinger, Cambridge, MA) (Sastry et al., 2013). Molecular docking was conducted on the best ASIC1a model processed with the Protein Preparation Wizard from the Schrödinger Suite (Jacobson et al., 2002; Shelley et al., 2007; Greenwood et al., 2010; Sastry et al., 2013). The protonation states of each side chain were generated using the software Epik (Schrödinger) for pH = 7 (Shelley et al., 2007; Greenwood et al., 2010). Protein energy minimization was performed using the OPLS Force Field (Schrödinger; Jorgensen et al., 1996; Harder et al., 2016).

Glide 75013 (Schrödinger) (Priesner et al., 2004; Halgren et al., 2004) was used for all docking calculations. Internal and external receptor grid boxes of 20 \times 20 \times 20 and 40 \times 40 \times 40 Å were centered in the transmembrane region. Initially, a standard precision Glide docking followed by extra precision refinement was carried out, generating at least two poses per docked molecule. Ligands are often known to induce conformational changes in the active site upon binding. We therefore used the Schrödinger induced fit docking protocol (Sherman et al., 2006) to account for these changes and to refine our initial docking. The receptor grid center was specified from the bound ligand of the first docking. In the first stage of the induced fit docking protocol, softened-potential docking is performed to generate 20 initial poses. The scaling factors to soften the potentials of the receptors and ligands were set to 0.5 in both cases. A 2.5-kcal/mol energy window was used for ligand conformational sampling. For each of the top 20 poses (with respect to GlideScore) from the initial softened-potential docking step, all residues within 5.0 Å of ligand poses were refined using the Prime Molecular dynamics.

Refinement was performed with the Prime package (Schrödinger) to accommodate the ligand by reorienting nearby side chains. Prime uses the OPLS parameter set (Jorgensen et al., 1996; Harder et al., 2016) and a surface generalized born implicit solvent model (Ghosh et al., 1998; Gallicchio et al., 2002). The complexes were ranked by Prime energy (molecular mechanics plus solvation), and those within 30 kcal/mol of the minimum energy structure were passed through for a final round of Glide docking and scoring. This 30-kcal/mol window was set prior to running; it appears that a 20-kcal/mol window would have been sufficiently large to capture all good poses from the initial docking step. The ligands were then redocked into their corresponding receptor structures using extra precision scoring in Glide. Each docking result was analyzed by comparing the Glide Docking and eModel scores. The first may be used for comparing different ligands, but the second score is suitable to rank different conformational forms of the same ligand.

Results

Diminazene Reversibly Blocks rASIC1a in Its Open State. To investigate the molecular mechanism of ASIC1a inhibition by diminazene, we studied its effect on rat ASIC1a expressed in Xenopus oocytes. First, we activated ASIC1a repeatedly by pH decreases from pH 7.4 to pH 6.5 with 3 \(\mu \text{M} \) diminazene present at various times (Fig. 1). When diminazene was preapplied at pH 7.4 for 60 seconds and coapplied with pH 6.5, peak current amplitudes were reduced to 29% ± 3% (Fig. 1, activation ii) relative to the control activation (Fig. 1, activation i; ii vs. i, \(P = 0.002 \)). As previously described (Chen et al., 2010b), the presence of diminazene also led to an acceleration of current decline such that almost the whole current was inhibited 1 second after activation (Fig. 1B). When diminazene was only coapplied with pH 6.5, peak current amplitudes were reduced to 32% ± 4% of control (Fig. 1, activation iv; iv vs. i, \(P < 0.001; n = 10 \)) and currents still declined within the first second after low-pH activation. This reduction was not significantly different from the reduction when diminazene was also preapplied to closed channels (ii vs. iv, \(P = 1 \)), showing that binding of diminazene to the open state is sufficient for inhibition, which would be expected, for example, when diminazene either has no access to its binding site on ASIC1a in the closed state or when diminazene binding in the closed state does not inhibit the channel.

When we applied diminazene to ASIC1a in the open conformation, 3 seconds after activation by pH 6.5, it rapidly (within ~1 second) inhibited the channel (Fig. 1, activation iii) such that current amplitudes measured 7 seconds after the
activation by pH 6.5 were reduced to 29% ± 4% compared with control (iii vs. i, \(P = 0.03 \); \(n = 9 \)). Continuous pre- and coapplication of diminazene did not reduce currents 7 seconds postpeak more strongly (Fig. 1 ii; 21% ± 3%; ii vs. i, \(P = 0.01 \); ii vs. iii, \(P = 0.3 \); \(n = 10 \)), further suggesting that diminazene mainly acts on the open conformation of ASIC1a.

The accelerated current decline in the presence of diminazene (for example, see activation ii in Fig. 1B) was interpreted as a facilitated desensitization (Chen et al., 2010b). When we activated rASIC1a by pH 6.5 in the initial presence of diminazene and 3 seconds later applied pH 6.5 without diminazene (Fig. 1; activation iv), the removal of diminazene induced, however, a rebound of current (current 7 seconds postpeak, 124% ± 10% of activation i; iv vs. i, \(P = 0.81 \); \(n = 10 \)), excluding that diminazene shifted ASIC1a in the desensitized state. It rather suggests that a fraction of channels were still in the open state but inhibited by diminazene, and that removal of diminazene removed inhibition. This interpretation suggests that diminazene acts as a slow open-channel blocker, but we cannot completely rule out complex gating modifications by diminazene. Taken together, our results so far suggest that diminazene inhibits ASIC1a in its open state, probably through an open-channel block with slow kinetics, explaining the apparently faster desensitization.

Diminazene Delays Desensitization of ASIC1a. If diminazene indeed blocked ASIC1a by binding to its open conformation, it might trap ASIC1a in the open conformation, slowing down desensitization (rather than facilitating it). To test if this was the case, we activated ASIC1a by pH 6.5 in the presence of 30 \(\mu M \) diminazene and quantified currents after 12.5 seconds, when usually a large fraction of channels is desensitized (Fig. 2A). When we quantified control currents without diminazene after 12.5 seconds of pH 6.5 application, they were reduced to 7.8% ± 1.2% of the peak current (Fig. 2A, black trace; \(n = 13 \)). This value was indeed significantly increased by the presence of diminazene. Three seconds of diminazene application at the beginning of the activation with pH 6.5 increased the current after 12.5 seconds to 10.9% ± 1.4% of the peak amplitude (\(P = 0.01 \); \(n = 13 \)), and 10 seconds of diminazene application further increased it to 17.5% ± 2.8% (\(P = 0.02 \); \(n = 13 \)). The increase of the current amplitude in the partial presence of diminazene demonstrates that diminazene delays ASIC1a desensitization and is therefore in agreement with the idea that it binds to and stabilizes the open conformation of ASIC1a.

After 27.5 seconds of pH 6.5 application, control currents in the absence of diminazene were almost completely reduced to 0.9% ± 0.2% of the peak amplitude (\(n = 13 \)). When diminazene was present at the beginning of the pH 6.5 application for 3, 10, or 25 seconds, current amplitudes were only slightly increased (0.9% ± 0.2%, 1.3% ± 0.3%, and 2.6% ± 0.6%, respectively; \(P = 0.03 \) for 25 seconds; \(n = 11–13 \)). Thus, diminazene can delay, but not prevent, desensitization of ASIC1a, as would be expected if diminazene binds to and unbinds from its binding site on ASIC1a, allowing channels to gradually “escape” into the desensitized state also in the presence of diminazene.

Diminazene Has a Submicromolar Potency at ASIC1a. A slow inhibition implies that the full inhibition by diminazene is not immediately reached, and that the reduction of peak current amplitudes underestimates the potency of diminazene. We therefore re-examined the apparent affinity of diminazene for ASIC1a. We pre- and coapplied increasing diminazene concentrations at pH 6.5 to rASIC1a-expressing oocytes (Fig. 3A) and determined concentration-response curves for peak currents, currents 1 second postpeak, and currents 3 seconds postpeak. Currents 1 and 3 seconds postpeak were chosen because 3 \(\mu M \) diminazene accelerated the current decay of ASIC1a from 2.26 ± 0.28 to 0.55 ± 0.08 seconds (\(n = 9 \); fits conducted on activation i and ii of Fig. 1; one outlier removed). Therefore, current amplitudes at these times represent the diminazene effect more faithfully than peak currents. The apparent affinity for diminazene increased from 0.94 ± 0.18 \(\mu M \) for peak currents to 0.30 ± 0.07 \(\mu M \) for currents 1 second postpeak (\(P = 0.003 \); \(n = 12 \)) and to 0.21 ± 0.04 \(\mu M \) for currents 3 seconds postpeak (\(P = 0.002 \); Fig. 3C). We conclude that the
In contrast to diminazene, the pore blocker amiloride does not enhance current decay, suggesting an “immediate,” fast block. In line with this, potencies of amiloride were indeed similar irrespective of whether they were determined at peak, 1, or 3 seconds postpeak (Fig. 3B and C; peak: 9.6 ± 1.3 μM; 1 second: 11.8 ± 1.9 μM; 3 seconds: 14.1 ± 2.7 μM; peak vs. 1 second, P = 0.07; peak vs. 3 seconds, P = 0.09; n = 12). Thus, use of peak currents for diminazene concentration-response curves indeed underestimates the apparent affinity of diminazene.

In contrast to diminazene, the pore blocker amiloride does not enhance current decay, suggesting an “immediate,” fast block. In line with this, potencies of amiloride were indeed similar irrespective of whether they were determined at peak, 1, or 3 seconds postpeak (Fig. 3B and C; peak: 9.6 ± 1.3 μM; 1 second: 11.8 ± 1.9 μM; 3 seconds: 14.1 ± 2.7 μM; peak vs. 1 second, P = 0.07; peak vs. 3 seconds, P = 0.09; n = 12). Thus, use of peak currents for diminazene concentration-response curves indeed underestimates the apparent affinity of diminazene.

We also determined apparent affinity for diminazene at the more acidic pH 5.5, revealing that diminazene also accelerated the current decline at pH 5.5 (Supplemental Fig. 1A). In agreement, the apparent affinity was higher when determined for currents 1 or 3 seconds postpeak than for peak currents (Supplemental Fig. 1B). Overall, apparent affinity for diminazene was lower at pH 5.5 than at pH 6.5 (peak: 3.49 ± 1.13 μM, P = 0.02; 1 second: 0.45 ± 0.05 μM, P = 0.11; 3 seconds: 0.39 ± 0.03 μM, P = 0.003, t test; n = 9–10), demonstrating some pH dependency of the diminazene affinity.

Using currents 1 or 3 seconds postpeak for determining the diminazene potency reveals that diminazene is one of the most potent small-molecule inhibitors known for ASIC1a. For all following experiments, we quantified diminazene effects 1 second postpeak.

Amiloride and Diminazene Compete for rASIC1a Inhibition. Slow inhibition of ASIC1a in the open conformation suggests that diminazene might inhibit ASIC1a by a block of the open pore. As amiloride is a pore blocker of DEG/ENaCs (Palmer, 1984; Schindel et al., 1997; Baconguis et al., 2014), we next asked whether diminazene competes with amiloride for a common binding site on ASIC1a. To test for a competitive interaction, we activated ASIC1a by pH 6.5 in the presence of 80 μM amiloride, which will inhibit ~90% of the current (Fig. 3C), and pre- and coapplied increasing diminazene concentrations (Fig. 4A). The additional presence of amiloride will increase the total inhibition of the channel, but in the case of competition for a common binding site, it should also decrease the apparent affinity for diminazene. The presence of amiloride indeed shifted the concentration-response curve of diminazene to the right (from 0.30 ± 0.07 to 6.0 ± 0.7 μM for currents 1 second postpeak; Fig. 4B). Assuming the competition of two inhibitors for a common binding site, the apparent inhibitor constant (K_i) of diminazene in the absence (K_i,app) and in the presence of amiloride (K_i,app) can be related by the equation K_i,app = K_i,app (1 + [amil]/K_i,amil). Using K_i,dimi = 0.3 μM, K_i,amil = 11.8 μM (Fig. 3; n = 13), and [amil] = 80 μM, a theoretical value (K_i,app = 2.3 μM) can be calculated that compares well with the experimentally determined value of 6.0 μM. Thus, these results indicate that both molecules compete for a common binding site in the ASIC1a pore.

Inhibition of ASIC1a by Amiloride and by Diminazene is Voltage-Dependent. To test directly if diminazene binds to the pore of ASIC1a, we tested if the inhibition of ASIC1a by diminazene is voltage-dependent. We activated ASIC1a with pH 6.5 at holding potentials between −100 and +60 mV in the presence and absence of 3 μM diminazene (Fig. 5A). The extent of inhibition of ASIC1a currents indeed depended on the membrane potential, with inhibition being most pronounced at −100 mV (Fig. 5B). More positive membrane potentials reduced the inhibition by diminazene, and at potentials more positive than 0 mV, diminazene almost did not inhibit ASIC1a (Fig. 5A and B). Similar to the magnitude of the inhibition, the accelerated current decline was also most pronounced at negative membrane potentials (Fig. 5A).

Since the Hill coefficient for the diminazene block of ASIC1a was close to 1 for currents 1 second postpeak (1.23 ± 0.06, n = 12, data from Fig. 3), we estimated inhibitory constants (K_i) at each holding potential by a simplified formula derived from the Hill equation assuming a Hill coefficient of 1. K_i values of diminazene

Fig. 3. Diminazene has a submicromolar potency. (A and B) Representative currents elicited by pH 6.5 in an rASIC1a-expressing oocyte. Either diminazene (A) or amiloride (B) was pre- and coapplied at the concentrations indicated. (C) Concentration-response curves of diminazene (Dimi, red) and amiloride (Amil, blue) determined for peak currents and for currents 1 or 3 seconds postpeak (as indicated by the corresponding symbols in (A) and (B)). Data points displayed were fit to a Hill function. Currents were normalized to the first activation without inhibitor. Error bars represent S.E.M.; n = 12. (D) Chemical structures of diminazene and amiloride, created with Open Babel 2.3.2 (http://openbabel.org/) (O’Boyle et al., 2011).
Site Within the Pore.

Homology Model of Open rASIC1a Predicts a Binding site of the two inhibitors within the ASIC1a pore.

by diminazene and amiloride is in line with an overlapping membrane electric field. Voltage-dependent block of ASIC1a and should therefore bind at a similar position relative to the experience similar proportions of the membrane electric field (Schmidt et al., 2014). As the voltage dependence of block and the competition between amiloride and diminazene strongly indicated a binding site within the membrane electric field and, thus, probably within the ion pore, we restricted the docking space to this area.

Molecular docking indeed located the diminazene and amiloride binding site within the outer half of the ion pore of rASIC1a (Fig. 6). We considered 15 and 16 binding poses within a 20-kcal/mol window from the lowest energy binding pose for amiloride and diminazene, respectively. Here, we examine the binding mode of the best poses according to the eModel score for both blockers (Supplemental Tables 1 and 2); binding modes of the other poses are reported in the Supplemental Material.

In its best binding pose, diminazene was surrounded (within 4 Å, chain indices reported in brackets) by residues G431(C), G432(B), G434(A), G435(A–C), M437(B), G438(B) and C, L439(A and C), G442(B), A443(B), and S444(B). Hydrogen bonds were formed between diminazene and the backbone of G434(B), G435(A), G438(C), A443(B), and with the side chain of L439(A and C). An H–π interaction was found between G435(B) and the aromatic ring of diminazene. Further hydrophobic contacts were observed between diminazene and G431(C), G435(A and C), M437(B), G438(B), L439(C), and S444(B) (Fig. 6A–C). A protein ligand interaction fingerprint (PLIF) summarizing the interaction between blockers and ASIC1a using a fingerprint scheme was generated in the MOE (Molecular Operating Environment; Chemical Computing Group, Montreal, Quebec, Canada) (Vilar et al., 2008; Da and Kireev, 2014). The PLIF of the best diminazene binding pose showed that the residues mostly involved in binding are D432(C), G434(B), G435(A), G438(C), and L439(A and C), (Supplemental Fig. 2A). A PLIF involving all binding poses of diminazene was also generated (Supplemental Figs. 3 and 4) which showed a conservation of these interactions across most of the binding poses plus interactions with G442 and A443 for 8 out of 16 and 5 out of 16 binding poses, respectively. Interactions with E63 and Y67 were also found for two of the binding poses.

The best binding pose of amiloride was surrounded by residues D432(B), G434(A), G435(A–C), Q436(B and C), Q436(C), G438(A–C), and L439(B). Therefore, amiloride occupies the same binding region as diminazene, but being smaller, its binding region does not extend to the highly conserved GAS motif in the middle of TMD2 formed by G442, A443, and S444. Hydrogen bonds were formed between amiloride and the backbone of D432(B), G435(C), and G438(B), and with the side chain of Q436(C) and L439(B). Hydrophobic contacts were observed with residues G435(B and C), Q436(B), G438(B and C), and L439(B) (Fig. 6, D–F). For the best binding pose, a PLIF was generated, which showed that the residues mostly involved in binding of amiloride are D432(B), G435(B), G436(B), G438(B), and L439(B) (Supplemental Fig. 2B). A PLIF involving all of the binding poses of amiloride was also generated (Supplemental Figs. 3 and 5), showing that the main interactions, with the exception of Q436(B), are mostly preserved in the other binding poses with an additional interaction of G431 for 3 out of 15 binding poses.

Fig. 4. Amiloride and diminazene compete for rASIC1a inhibition. (A) Representative currents elicited by pH 6.5 in an rASIC1a-expressing oocyte in the presence of 80 μM amiloride and increasing concentrations of diminazene. (B) Concentration-response curves for diminazene alone (dimi, red) and for diminazene in the presence of 80 μM amiloride (dimi + 80 μM amil, purple) for currents 1 second postpeak. Data displayed were fit to a Hill function. Currents were normalized to the first activation without diminazene. Error bars represent S.E.M.

for rASIC1a were clearly voltage-dependent and could be fit by the Woodhull model (see Materials and Methods) for voltage-dependent channel block (Fig. 5C). With the Woodhull model, the proportion of the membrane electric field experienced by a molecule can be estimated by the value δ, which was 0.32 ± 0.03 for diminazene, determined 1 second postpeak.

To compare the behavior of diminazene and amiloride at different membrane potentials, we repeated the same experiment with 80 μM amiloride instead of diminazene. As shown previously by others (Dorofeeva et al., 2008), the inhibition by amiloride was also dependent on the membrane potential and strongest at −100 mV (Fig. 5D–F). The proportion of the membrane electric field (δ) sensed by amiloride was 0.51 ± 0.02 (determined 1 second postpeak). Thus, both drugs seem to experience similar proportions of the membrane electric field and should therefore bind at a similar position relative to the membrane electric field. Voltage-dependent block of ASIC1a by diminazene and amiloride is in line with an overlapping binding site of the two inhibitors within the ASIC1a pore.

Molecular Docking of Diminazene and Amiloride to a Homology Model of Open rASIC1a Predicts a Binding Site Within the Pore. To reveal the diminazene and amiloride binding site at the atomic level, we docked both molecules to a homology model of rASIC1a in the open conformation based on the open conformation of chicken ASIC1 (Protein Data Bank accession number 4NTW) (Baconguis et al., 2014). As the voltage dependence of block and the competition between amiloride and diminazene strongly indicated a binding site within the membrane electric field and, thus, probably within the ion pore, we restricted the docking space to this area.

Molecular docking indeed located the diminazene and amiloride binding site within the outer half of the ion pore of rASIC1a (Fig. 6). We considered 15 and 16 binding poses within a 20-kcal/mol window from the lowest energy binding pose for amiloride and diminazene, respectively. Here, we examine the binding mode of the best poses according to the eModel score for both blockers (Supplemental Tables 1 and 2); binding modes of the other poses are reported in the Supplemental Material.

In its best binding pose, diminazene was surrounded (within 4 Å, chain indices reported in brackets) by residues G431(C), G432(B), G434(A), G435(A–C), M437(B), G438(B) and C, L439(A and C), G442(B), A443(B), and S444(B). Hydrogen bonds were formed between diminazene and the backbone of G434(B), G435(A), G438(C), A443(B), and with the side chain of L439(A and C). An H–π interaction was found between G435(B) and the aromatic ring of diminazene. Further hydrophobic contacts were observed between diminazene and G431(C), G435(A and C), M437(B), G438(B), L439(C), and S444(B) (Fig. 6A–C). A protein ligand interaction fingerprint (PLIF) summarizing the interaction between blockers and ASIC1a using a fingerprint scheme was generated in the MOE (Molecular Operating Environment; Chemical Computing Group, Montreal, Quebec, Canada) (Vilar et al., 2008; Da and Kireev, 2014). The PLIF of the best diminazene binding pose showed that the residues mostly involved in binding are D432(C), G434(B), G435(A), G438(C), and L439(A and C), (Supplemental Fig. 2A). A PLIF involving all binding poses of diminazene was also generated (Supplemental Figs. 3 and 4) which showed a conservation of these interactions across most of the binding poses plus interactions with G442 and A443 for 8 out of 16 and 5 out of 16 binding poses, respectively. Interactions with E63 and Y67 were also found for two of the binding poses.

The best binding pose of amiloride was surrounded by residues D432(B), G434(A), G435(A–C), Q436(B and C), Q436(C), G438(A–C), and L439(B). Therefore, amiloride occupies the same binding region as diminazene, but being smaller, its binding region does not extend to the highly conserved GAS motif in the middle of TMD2 formed by G442, A443, and S444. Hydrogen bonds were formed between amiloride and the backbone of D432(B), G435(C), and G438(B), and with the side chain of Q436(C) and L439(B). Hydrophobic contacts were observed with residues G435(B and C), Q436(B), G438(B and C), and L439(B) (Fig. 6, D–F). For the best binding pose, a PLIF was generated, which showed that the residues mostly involved in binding of amiloride are D432(B), G435(B), G436(B), G438(B), and L439(B) (Supplemental Fig. 2B). A PLIF involving all of the binding poses of amiloride was also generated (Supplemental Figs. 3 and 5), showing that the main interactions, with the exception of Q436(B), are mostly preserved in the other binding poses with an additional interaction of G431 for 3 out of 15 binding poses.
Therefore, molecular docking suggests overlapping binding sites of diminazene and amiloride within the outer half of the ASIC1a pore. Hence, this model can explain the competition of both molecules and the dependence of their inhibition on the membrane potential.

rASIC1a Pore Mutants G435C and L439C Strongly Decrease Diminazene and Amiloride Block. To test if molecular docking correctly predicted the binding site of diminazene and amiloride, we generated point mutations of residues adjacent to the predicted site in rASIC1a (G431C, G435C, G436C, G438C, G438A, L439C, F440C, I441C, and S444A) and tested the sensitivity of mutant channels to diminazene and amiloride. Similar mutations have previously already been used successfully to determine the shape of the ASIC1 ion pore (Li et al., 2011). ASIC1a wild type (wt) and mutants were activated by application of pH 6.5 with and without pre- and coapplication of 3 μM diminazene or 80 μM amiloride, respectively (Fig. 7A). Diminazene and amiloride reduced current amplitudes of rASIC1a wt to 11.5% ± 1.3% and 20.5% ± 1.8%, respectively, relative to control (1 second post-peak; Fig. 7B; n = 15). In contrast, inhibition by diminazene was significantly reduced for the mutants G435C, G436C, L439C, and I441C; mutants G435C and L439C were practically insensitive to diminazene (Fig. 7; G435C: 94.4% ± 5.7% and L439C: 82.8% ± 6.4% of control; P < 0.001; n = 7–10). Both mutants were also nearly unaffected by amiloride (Fig. 7; G435C: 82.0% ± 5.2% and L439C: 89.1% ± 9.4% of control; P < 0.001; n = 6–10). In addition, amiloride inhibition was also significantly reduced for Q436C, but not for I441C (Fig. 7B). Interestingly, mutant G431C was slightly more strongly inhibited by both inhibitors (Fig. 7B; diminazene: 5.9% ± 1.4%; G431C vs. wt: P = 0.06; amiloride: 8.2% ± 1.6%; G431C vs. wt: P = 0.001; n = 8). Similarly, mutant F440C was more strongly inhibited by amiloride (10.6% ± 3.1%; P = 0.051; n = 7), but not diminazene (23.3% ± 8.3%; P = 0.34; n = 7). Mutations G438C, G438A, and S444A led to a loss of function, as we never observed pH-activated currents in oocytes injected with the respective cRNA.

As G435, G438, and L439 were predicted to form hydrogen bonds with both amiloride and diminazene (Fig. 6), and mutations of the residues G435 and L439 dramatically reduced the inhibition by both blockers, these results strongly support our docking results. Taken together, our results strongly support a diminazene and amiloride binding site within the outer half of the ASIC1a pore.

Discussion

There were two main findings in this study. First, a detailed analysis of the inhibition of ASIC1a by diminazene revealed...
Fig. 6. Molecular docking predicts a diminazene binding site within the pore. (A and D) Two-dimensional ligand interaction diagram of the best binding pose for diminazene (A) and amiloride (D). Key amino acids within 4 Å of docked compounds and their binding interactions were identified. (B and E) Local tridimensional view of ligands within the ASIC1a binding pocket. The ligands are in green (B) and cyan (E) licorice representation for diminazene and amiloride, respectively. (C and F) Full tridimensional view of ASIC1a with bound diminazene (C) or amiloride (F) in green and cyan solid surface representation, respectively. The protein is represented as an illustration with a wireframe surface.
that diminazene acts as a slow blocker of the open state of ASIC1a. Second, functional analysis combined with molecular docking and site-directed mutagenesis consistently showed that diminazene blocks ASIC1a by binding within the ion pore above the “GAS belt,” which constrains the open pore (Baconguis et al., 2014) but may not be the selectivity filter of ASICs (Lynagh et al., 2017). Diminazene binds to a site that largely overlaps with the binding site of amiloride, but with higher affinity than amiloride. In the original discovery of diminazene as a potent inhibitor of ASICs, it was proposed that it binds within a small groove in the ECD, formed by part of the beta-ball domain and the palm domain (Chen et al., 2010b). Binding to other domains could not be excluded, however, and binding to the groove in the ECD was not confirmed experimentally (Chen et al., 2010b). Our study resolves this uncertainty and clearly reveals the diminazene binding site, which is responsible for high-affinity inhibition of ASIC1a. However, we cannot exclude that diminazene also binds with lower affinity to other sites on the channel, such as in the proposed groove in the ECD.

Based on voltage dependence of inhibition and competition with amiloride, a pore-block mechanism of diminazene was previously already suggested for the bile acid–sensitive ion channel (BASIC; also named ASIC5) (Wiemuth and Gründer, 2011), which is closely related to ASICs. The findings of the present study are thus in good agreement with the previous findings on BASIC and suggest a conserved structure of the outer pore of ASICs and BASIC. In addition to the previous findings on BASIC, the present study describes in molecular detail the binding site within the outer ion pore and identifies residues G435 and L439 as particularly important contact points of diminazene.

Peptide-gated ion channels from Hydra, the HNaCs, which are also closely related to ASIC/BASIC (Golubovic et al., 2007), are also inhibited by diminazene with an apparent affinity that varies for different HNaCs between 0.05 and 31 μM and is >100-fold higher than the apparent affinity of amiloride at these channels (Assmann et al., 2014). Although the mechanism of inhibition of diminazene has not been investigated, it is highly likely that it is also a pore blocker of HNaCs.

Although the ENaC belongs to the same gene family as ASICs/BASIC and HNaCs, it is not closely related to these channels (Assmann et al., 2014), and its pore-blocker pharmacology has some remarkable differences: it is inhibited by amiloride with high affinity (Canessa et al., 1994), comparable to that of diminazene at ASICs, but it is not inhibited by diminazene (Chen et al., 2010b), highlighting substantial differences in the structure of the outer pore of ASICs/BASIC/HNaCs and ENaC.

In addition to reducing the peak current amplitude of ASICs, diminazene has the interesting property of leading to an apparent acceleration of desensitization of the remaining current (Chen et al., 2010b). We could confirm this rapid decline of the current, which was initially described for ASICs from mouse hippocampal neurons (Chen et al., 2010b), for rat ASIC1a. It was proposed that diminazene facilitated desensitization, and that it inhibits ASIC currents via a distinct mechanism compared with amiloride (Chen et al., 2010b). Our study, however, revealed that diminazene and amiloride both inhibit ASICs via a common pore-block mechanism. As the outer pore constricts during desensitization (Gonzales et al., 2009; Gründer and Augustinowski, 2012), an acceleration of desensitization by diminazene is incompatible with its binding site within the ion pore. We could indeed show that diminazene stabilizes the open state of ASIC1a and slows, rather than accelerates, desensitization, as expected for an open-channel blocker. Collectively, our results thus suggest that diminazene slowly binds to its binding site in the ion pore, leading to an incomplete block at the onset of activation and to the rapid decline of the peak current. Such a scenario implies that the analysis of peak current amplitudes underestimates the potency of diminazene at ASICs, and we could indeed show that the apparent inhibitory constant (Ki) determined 1 second after peak is 0.3 μM, approximately 3-fold higher than the potency determined at peak.

Using diminazene to inhibit ASICs in vivo, it is hard to predict whether the incomplete inhibition of the peak current by diminazene would be more relevant than the complete inhibition after few seconds. Although ASICs are supposed to open only briefly during synaptic stimulation (MacLean and
Jayaraman, 2016), for example (not allowing for a complete block by diminaZene), during high-frequency stimulation of ASICs, a cumulative slow block by diminaZene might still reduce ASIC currents more strongly than predicted by the reduction of peak current amplitudes. This is also the case in situations in which the pH drops for longer time periods, such as during ischemia or peripheral inflammation. Irrespective of these uncertainties, a blocker with the same affinity as diminaZene but a faster off-rate would be desirable for clinical use.

Nafamostat mesilate is chemically related to diminaZene (Chen et al., 2010a) and blocks ASIC1a with an apparent K_i of 15 μM; its affinity to ENaC, however, is low (K_i > 1 nM) (Ugawa et al., 2007). These properties suggest that it may share the binding site with diminaZene (Rash, 2017). For ASICs, it has indeed been shown that block by nafamostat is voltage-dependent (Wiemuth and Gründer, 2011). We therefore speculate that nafamostat is also an open-channel blocker of ASICs. As diminaZene has a significantly higher potency at ASICs than nafamostat, our results indicate that diminaZene is an interesting lead compound for unspecific blockers of ASICs.

Acknowledgments

The authors thank A. Osleren-Bujotzek for expert technical assistance and D. Wiemuth and M. Pusch for helpful discussions.

Authorship Contributions

Participated in research design: Schmidt, Gründer.

Conducted experiments: Schmidt, Joussen.

Performed data analysis: Schmidt, Rossetti.

Wrote or contributed to the writing of the manuscript: Schmidt, Gründer.

References

Chen X, Orser BA, and MacDonald JF (2010b) Design and screening of ASIC inhibitors and nociception in the peripheral and central nervous systems. Neuropharmacology 94:49–57.

Chen X, Orser BA, and MacDonald JF (2010a) Structure, function, and pharmacology of acid-sensing ion channels. Neuropharmacology 58:1045–1053.

Chen X, Qiu L, Li M, Dürrnagel S, Orser BA, Xiong ZG, and MacDonald JF (2010b) Dihydrolipoic acid as the high-affinity inhibitors of acid-sensing ion channels. Neuropharmacology 59:1255–1261.

Chen X, Qiu L, Li M, Dürrnagel S, Orser BA, Xiong ZG, and MacDonald JF (2010b) Dihydrolipoic acid as the high-affinity inhibitors of acid-sensing ion channels. Neuropharmacology 58:1045–1053.

Chen X, Qiu L, Li M, Dürrnagel S, Orser BA, Xiong ZG, and MacDonald JF (2010b) Dihydrolipoic acid as the high-affinity inhibitors of acid-sensing ion channels. Neuropharmacology 59:1255–1261.

Downloaded from molpharm.aspetjournals.org on July 8, 2021
Diminazene Is a Pore Blocker of ASIC1a

Sherwood TW, Lee KG, Gormley MG, and Askwith CC (2011) Heteromeric acid-sensing ion channels (ASICs) composed of ASIC3b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci 31:9723–9734.

Address correspondence to: Axel Schmidt, Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany. E-mail: axel.schmidt1@rwth-aachen.de; or Stefan Gründer, Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany. E-mail: agruender@ukaachen.de