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ABSTRACT
Heat shock proteins (Hsp) are a class of stress-inducible
proteins that mainly act as molecular protein chaperones. This
chaperone activity is diverse, including assisting in nascent
protein folding and regulating client protein location and
translocation within the cell. The main proteins within the Hsp
family, particularly Hsp70 and Hsp90, also have a highly diverse
and numerous set of protein clients, which when combined with
the high expression levels of Hsp proteins (2%–6% of total
protein content) establishes these molecules as “central
regulators” of cell protein physiology. Among the client
proteins, Hsps regulate numerous signal-transduction and
receptor-regulatory kinases, and indeed directly regulate some
receptors themselves. This also makes the Hsps, particularly
Hsp90, central regulators of signal-transduction machinery,

with important impacts on endogenous and drug ligand re-
sponses. Among these roles, Hsp90 in particular acts to
maintain mature signaling kinases in a metastable conforma-
tion permissive for signaling activation. In this review, we will
focus on the roles of the Hsps, with a special focus on Hsp90,
in regulating receptor signaling and subsequent physiologic
responses. We will also explore potential means to manipulate
Hsp function to improve receptor-targeted therapies. Overall,
Hsps are important regulators of receptor signaling that are
receiving increasing interest and exploration, particularly as
Hsp90 inhibitors progress toward clinical approval for the
treatment of cancer. Understanding the complex interplay of
Hsp regulation of receptor signaling may provide important
avenues to improve patient treatment.

Introduction
The heat shock proteins (Hsp) are a conserved class of

stress-inducible proteins that primarily act as molecular
chaperones (Odunuga et al., 2004; Li and Buchner, 2013).
This chaperone activity is diverse, with the central Hsp
regulators Hsp70 and Hsp90, assisted by cochaperones
such as Hsp70-Hsp90 organizing protein–stress-induced
phosphoprotein-1 (Hop/STIP1) and Cdc37, performing a cen-
tral role in promoting proper folding of nascent polypeptides
(Odunuga et al., 2004; Gould et al., 2009; Assimon et al., 2013;
Li and Buchner, 2013; Verba et al., 2016). However, the
chaperone activity of the Hsps extends well beyond the
promotion of proper protein folding. Hsp90 in particular
maintains mature signaling kinases and other signal-
transduction proteins in the proper metastable conformation
necessary for signaling activation (Li and Buchner, 2013).

Hsp90 can also regulate the location and translocation of
signaling kinases and other proteins within the cell, helping
to maintain the proper organization of cell biology and signal
transduction (Yang et al., 2012). Hsp90 can also act as a
molecular scaffold, selectively associating signaling kinases
and other proteins in close proximity for selective activation
during signal transduction (Schulte et al., 1995; Jaiswal et al.,
1996; Nieto-Miguel et al., 2008). OtherHsps show a diverse set
of roles in regulating cell function, such as Hsp27 acting as a
central regulator of actin polymerization and thus cell motil-
ity and other cytoskeletal functions (Okada et al., 2005;
McConnell and McAlpine, 2013).
The Hsps perform these different chaperone functions on a

broad array of client proteins. These client proteins span
nearly every functional class, including transcription factors,
nuclear hormone receptors, viral proteins, and signaling
kinases. In this review, we will focus on the role of Hsps,
particularly Hsp90, in regulating receptor-related signaling.
Of the receptors in the genome, G protein-coupled receptors
(GPCRs) constitute the largest class, with more than
800 GPCRs in humans; these represent a plurality of the drug
targets exploited in the current pharmacopeia and in ongoing
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clinical trials (Hauser et al., 2017). As such, GPCRs represent
the largest area of study for receptor activation and signal
transduction and will be the primary but not exclusive focus of
this review.

Heat Shock Protein 90
G Protein-Coupled Receptor Kinases. One of the larg-

est classes of signaling proteins regulated by Hsp90 are
signaling kinases, and regulation of these kinases is the main
means by which Hsp90 regulates receptor signaling. Hsp90
regulates a broad swathe of these kinases across numerous
functional classes, often in concert with its kinase-specific
cochaperone Cdc37 (Grammatikakis et al., 1999; Tatebe and
Shiozaki, 2003; Gould et al., 2009; Ota et al., 2010; Li and
Buchner, 2013; Verba et al., 2016). A selection of these
regulated kinases are listed in Table 1, and further informa-
tion on Hsp90 client proteins can be found in a web database
maintained by Didier Picard of the University of Geneva
(www.picard.ch) as well as the following references: Tsaytler
et al. (2009); Echeverría et al. (2011). Of these client proteins,
the G protein-coupled receptor kinases (GRKs) are the most
closely associated with GPCR signaling, as GRKs directly
phosphorylate GPCRs upon activation to promote desensiti-
zation, b-arrestin recruitment, and internalization (Brackley
et al., 2016; Penela, 2016).
Hsp90 has been shown to stabilize and promote the

maturation of GRKs 2, 3, 5, and 6, through which Hsp90 can
generally promote GPCR desensitization and internalization
across a broad array of GPCR targets (Luo and Benovic, 2003;
Wu et al., 2012; Penela, 2016). This interaction with GRK3
was found to be regulated by acute calcium release in
neuroblastoma cells, suggesting that Hsp90 could acutely
regulate GRK3 activity in activated neurons (Salim and
Eikenburg, 2007). Hsp90 also regulates GRK localization
and transport within the cell. Hsp90 was found to target
GRK2 to the mitochondria in response to extracellular signal-
regulated kinase (ERK)–mitogen-activated protein kinase
(MAPK) activation during ischemic stress; this translocation
was found to promote the mitochondrial permeability transi-
tion and cell death (Chen et al., 2013a). These results suggest
that Hsp90 inhibitors could be potential therapies for
ischemia-reperfusion injury after myocardial infarction or
stroke, which was supported by a recent experimental stroke
study (Kim et al., 2015). These combined studies suggest that
Hsp90 could have a broad impact on GPCR signaling via
regulation of GRKs.
Heterotrimeric G Proteins. The heterotrimeric G pro-

teins are a class of effector proteins that convey signal

transduction downstream of all GPCRs. These proteins form
an obligate trimer of an a-subunit that differentially modu-
lates cAMP or calcium signaling depending on subtype, and a
b/g-dimer that evokes phospholipase C/calcium signaling
(Gurevich and Gurevich, 2017). Regulation of these G proteins
by Hsp90 thus has the potential to regulate signal trans-
duction downstream of up to hundreds of GPCRs. Hsp90 was
shown to direct mature Ga12 (but not Ga13) specifically to lipid
rafts and the mitochondria, which is required for Ga12

signaling; this demonstrates an obligate role for Hsp90 in all
GPCR signaling evoked by this protein (Vaiskunaite et al.,
2001; Waheed and Jones, 2002; Andreeva et al., 2008;
Montgomery et al., 2014). Among other potential roles, this
Ga12 targeting was shown to be necessary for tight junction
formation in Mardin-Darby canine kidney cells (Sabath et al.,
2008). Hsp90 was also shown to play a similar role in trans-
location and targeting of the Gai2 protein to the cannabinoid
type-2 receptor, through which Hsp90 could have a broad
impact on cannabinoid signaling in the central nervous system
and immune system (He et al., 2007). Hsp90 was further
shown to regulate guanosine di/triphosphate (GDP/GTP) ex-
change of Gas by forming a complex with this protein; as
GDP/GTP exchange is central to G protein signaling (Gurevich
and Gurevich, 2017), Hsp90 could have a broad impact on all
Gas-coupled GPCRs through this interaction (Gibbs et al.,
2009). Although less specific than the above regulatory roles,
Hsp90 was also shown to maintain protein expression of Gao,
through which Hsp90 could generally promote GPCR signaling
of receptors that couple to this G protein (Busconi et al., 2000).
Intriguingly, Hsp90 was also shown to form a complex with the
Gb/g-dimer; although this interaction could broadly impact
GPCR signaling through Gb/g, no functional impact has yet
been identified for this association (Inanobe et al., 1994).
Small GTPases. The small GTPases (Ras, Rac, etc.) are a

large class of downstream signaling molecules that are
highly impactful in numerous signal-transduction cascades,
including GPCR signaling as well as other receptor families.
This family of proteins, although GTPases that cycle GDP
with GTP, are distinct from the heterotrimeric G proteins
above. The small GTPase Ras is perhaps the best studied
Hsp90 client protein, as increased Ras activity owing to
mutation or other causes is a major driver of cancer cell
proliferation through the Ras-Raf–MEK–ERK-MAPK cas-
cade [for examples, see Haarberg et al. (2013), Bar et al.
(2017), and Park et al. (2017)]. Treatment with Hsp90
inhibitors to block cancer cell growth can act to destabilize
Hsp90-Ras interactions directly, or circumvent the pro-
proliferation drive of Ras.
Hsp90 has been shown to complex with Raf kinase to

promote cell proliferation, and this interaction has further
been shown to be dependent on Ras. Ras signaling promotes
Hsp90-Raf formation, which in turn associates the Hsp90-Raf
complex with Ras in the membrane. This trinary complex acts
as a positive feedback interaction to promote Ras-Raf signal-
ing and thus cell proliferation [references for all above claims:
Schulte et al. (1995); Cissel and Beaven (2000); Mitra et al.
(2016); Diedrich et al. (2017)]. Interestingly, Hsp90 has also
been shown to repress Ras-mediated protein kinase A signal-
ing, demonstrating the importance of context in the actions of
Hsp90 to regulate signaling (Shapiro et al., 2009).
Beyond Ras, Hsp90 has been shown to associate with and

regulate several members of the Rab family. Hsp90 was

TABLE 1
Selected signaling kinase families regulated by Hsp90
Selected families of signaling kinases known to interact with and are regulated by
Hsp90 are shown. The list is not exhaustive. From Echeverría et al. (2011) and a site
maintained by Dr. Didier Picard of the University of Geneva (www.picard.ch).

ACVR Cyclin ERBB ERK-MAPK
Akt CDK GRK JNK MAPK
ALK DDR GSK3 p38 MAPK
AMPK DAPK GTPases Atyp MAPK
ASK1 DYRK IKK mTOR
c-Abl eEF-2 JAK NTRK
CAMK EPH MAPK-Ks p90RSK
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shown to regulate the access of Rab to the protein a-GDP
dissociation inhibitor (a-GDI), which regulates GDP/GTP
exchange. As such, this interaction represents an impor-
tant signal-responsive mechanism to regulate Rab activity
(Sakisaka et al., 2002; Chen et al., 2005; Chen and Balch,
2006; Raffaniello et al., 2009). Hsp90 was also shown specif-
ically to complex with Rab11 and Rab5, through which Hsp90-
regulated signaling-responsive endocytosis and sorting (Liu
et al., 2009; Allonby et al., 2014; Bozza et al., 2014). Hsp90
likewise targets Rab3 to the membrane to regulate internal-
ization (Chen et al., 2013b). Interestingly, some Rab proteins
have been shown to regulate Hsp90, in that Rab27 has been
shown to regulate the cleavage and secretion of Hsp90 as an
extracellular progrowth signal (Hendrix et al., 2010).
Hsp90 has also been shown to link Rho signaling directly

to the GPCR vascular endothelial growth factor receptor.
Hsp90 couples RhoA to the vascular endothelial growth factor
receptor and is necessary for the activation of focal adhesion
kinase [FAK; Le Boeuf et al. (2004)]. ThismakesHsp90 crucial
for vasculogenesis signaling via VEGF. Hsp90 also regulates
cytoskeletal remodeling via Rho/RhoC, relating to motility,
with Hsp90 blocking cancer migration in some contexts
through the regulation of Rho (Amiri et al., 2007; Willmer
et al., 2013). Hsp90 also regulates access to Rho of the Rho-
GDP exchange regulatory protein Vav3, through which
Hsp90 may regulate a broad swathe of GPCR and other
receptor signaling through Rho (Wu et al., 2013). Finally,
Hsp90 increases Src-mediated RhoA signaling in endothe-
lial cells, implicating Hsp90 in the promotion of macro-
phage extravasation and edema in response to inflammation
(Joshi et al., 2014).
Continuing with this theme, Hsp90 also regulates the Rac

family mostly in the context of inflammation. Hsp90 com-
plexes with Rac1 to promote its signaling, which was found to
be crucial in the innate immunity response (Thao et al., 2007).
Likewise, Hsp90 promotes Rac1 signaling in infected gastric
epithelial cells, promoting reactive oxygen species generation
and cell damage in this context (Cha et al., 2010). This could
make Hsp90 inhibitors useful for the treatment of gastric
ulcers. Finally, Hsp90 was shown to promote a Rac1–PP5–
ERK-MAPK complex, thereby regulating ERK-MAPK activa-
tion and activity (Mazalouskas et al., 2014). Together, these
studies demonstrate the strong impact of Hsp90 on these
small GTPases, which will have broad effects on the signaling
of multiple receptor families in multiple physiologic contexts.
Signaling Kinases. Hsp90 also regulates an incredibly

broad swathe of signaling kinases, by which receptors carry
out much of their signaling activity [Table 1, Tsaytler et al.
(2009; Echeverría et al. (2011)]. We cannot exhaustively cover
each kinase family but will highlight below some prominent
examples to demonstrate the impact of Hsp90 on receptor-
kinase signaling. By regulating these kinases, Hsp90 may
regulate the signaling of every receptor and every physiologic
process they are implicated in.
The ERK-MAPK pathway is perhaps the best studied in

regard to Hsp90 regulation, owing to the importance of this
pathway in regulating cell survival and proliferation, and
thus a major mechanism for Hsp90 inhibition in cancer
therapy (Sidera and Patsavoudi, 2014; Nagaraju et al.,
2016; Park et al., 2017). As discussed above, Hsp90 forms a
complex with the small GTPase Ras and the kinase Raf
that promotes their activity, both of which go on to activate

ERK-MAPK (Schulte et al., 1995; Cissel and Beaven, 2000;
Mitra et al., 2016; Diedrich et al., 2017).
However, Hsp90 has also been directly associated with ERK

signaling, which has been shown to be dependent on context,
that is, increased in some contexts and decreased in others.
This theme is present in work relating to the opioid receptors.
Hsp90 has only been lightly studied in opioid receptor
signaling: Hsp90 inhibitors were shown to block opioid cAMP
superactivation in a cell model (Koshimizu et al., 2010), and
chronic morphine treatment was shown to increase Hsp90
expression in the synapse, whereas Hsp90 inhibitors acutely
blocked morphine withdrawal behavior (Abul-Husn et al.,
2011). In our own work, we found that Hsp90 strongly
increases ERK-MAPK signaling in the brain, leading to loss
of ERK activation andmorphine analgesia in some pain states
with Hsp90 inhibitor treatment (Lei et al., 2017). In contrast,
we found that Hsp90 in the spinal cord strongly potentiates
ERK-MAPK signaling, in that Hsp90 inhibitor treatment in
the spinal cord led to enhanced ERK activation and analgesia
in response to morphine (unpublished data, Fig. 1). These
results demonstrate how context determines the role of Hsp90
regulation of ERK signaling, with strongly divergent physio-
logic consequences. This theme is echoed in the literature:
Hsp90 complexedwith and promoted ERK-MAPK signaling in
some contexts (Sétáló et al., 2002; Georgakis et al., 2006; Rice
et al., 2008; Yun et al., 2011; Wang et al., 2014) but blocked it
in others (Lin et al., 2015).
Beyond the MAPKs, Hsp90 also regulates numerous other

influential signaling kinase families that signal downstream
of receptors (Table 1). These include protein kinase C, a
central regulatory kinase in the cell; Hsp90 was shown to

Fig. 1. Summary of the context-dependent role of Hsp90 in regulating ERK-
MAPK in the brain vs. spinal cord. The m opioid receptor (MOR) promotes
ERK-MAPK phosphorylation in response to opioid signaling, which
induces antinociception in pain states. Hsp90 differentially regulates this
process by promoting ERK-MAPK activation in the brain and repressing it
in the spinal cord. Hsp90 inhibitors (17-AAG, KU-32[Ansar et al., 2007; Lei
et al., 2017]) or cochaperone inhibitors (gedunin, celastrol[Sassa et al.,
1990; Brandt et al., 2008]) reverse this regulation, leading to blocked ERK-
MAPK activation in the brain and enhanced activation in the spinal cord;
this results in blocked opioid antinociception in the brain and enhanced
antinociception in the spinal cord (dashed lines). Using selective inhibitors
and in vivo CRISPR, we further found that Hsp90a and the cochaperones
Cdc37 and p23 mediate this regulation in the brain. Data taken from Lei
et al. (2017) and unpublished data from the Streicher laboratory.
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target protein kinase C « to the mitochondria after adenosine
receptor activation, leading to ischemic protection in the brain
and heart (Yang et al., 2012; Thompson et al., 2013). Hsp90
also generally promotes stability and activation of the cyclin-
dependent kinases, which are crucial for regulating the cell
cycle; this promotion may underlie in part the mechanism by
which Hsp90 promotes cancer growth, although in at least
some contexts Hsp90 prevents inappropriate cell cycle entry
by the cyclin-dependent kinases (Mikolajczyk and Nelson,
2004; Chaklader et al., 2012; Stetz et al., 2017). Another
central kinase regulated by Hsp90 is glycogen synthase
kinase-3 (GSK-3), which requires Hsp90 for functional matu-
ration, and which also requires Hsp90 for complexing with the
Wnt/b-catenin cascade to promote signaling through that
pathway (Lochhead et al., 2006; Cooper et al., 2011; Jin
et al., 2016). These examples give the flavor of the wide-
ranging and impactful regulation of receptor-activated signal-
ing kinases by Hsp90 and show how crucial this protein is for
regulating receptor signal transduction in numerous contexts.

Heat Shock Protein 70
Hsp70 is a close partner of Hsp90 in the protein folding and

maturation process; however, Hsp70 acts earlier on in the
process, so it has a smaller role in regulating mature protein
activation, signaling complex formation, and subcellular
targeting than does Hsp90 (Li and Buchner, 2013). In
addition, treatment with typical ATP binding pocket–
targeted Hsp90 inhibitors releases heat shock factor-1
(HSF-1), leading to increases in Hsp70 protein expression;
this can make disentangling Hsp90 inhibition from Hsp70
induction difficult in practice (McConnell and McAlpine,
2013; Kim et al., 2015; Lei et al., 2017). Nonetheless, clear
evidence has emerged for the role of Hsp70 in regulating
GPCR signaling. An early study demonstrated that Hsp70
interacts with unglycosylated versions of the angiotensin
receptor, leading to retention in the endoplasmic reticulum;
this mechanism is thus important for insuring the transport
of mature, glycosylated receptor to the membrane (Lanctôt
et al., 2006). Similar studies found that Hsp70 was important
in the folding and trafficking of the adenosine A2A receptor
(Bergmayr et al., 2013) and the lysophosphatidic acid receptor
(Zhao et al., 2014) in the endoplasmic reticulum. Continuing
the theme of trafficking and internalization, Hsp70 was also
found to be a substrate of GRK5, and phosphorylation by
GRK5 was necessary for Hsp70 to induce agonist-mediated
internalization of the chemokine receptor CXCR4 (Barker and
Benovic, 2011). These studies thus demonstrate a clear role
for Hsp70 in processing and targeting GPCRs specifically to
the membrane, as well as internalizing those receptors after
agonist activation, a crucial negative feedback loop in GPCR
signaling. Interestingly, another study showed that Hsp70
could directly complex with the mature adenosine A2A
receptor; this prevented G protein binding to activated re-
ceptor and attenuated receptor signaling (Lim et al., 2013).
These results show that Hsp70 can dynamically regulate
mature GPCR signaling. Finally, Hsp70 can also promote the
expression and maturation of numerous signaling kinases, as
does Hsp90. However, in general, this role appears to be
weighted to simple maturation/expression and not mature
kinase activation, complex formation, and cellular targeting
(e.g. Hao et al., 2018).

Heat Shock Protein 40
Hsp40 is also involved in the early stages of protein

maturation and folding and regulates the ATPase activity
and substrate binding of Hsp70 (Li and Buchner, 2013;
McConnell and McAlpine, 2013). However Hsp40 has also
been shown to possess unique roles in regulating receptors. In
one case, Hsp40 was found to be crucial for the proper
processing and targeting of the rhodopsin GPCR within the
photoreceptors. Interestingly, this role was shown to be
independent of Hsp70 (Chapple and Cheetham, 2003). Like-
wise, Hsp40 was shown to properly process and target the
human cannabinoid receptor type-1, albeit in a bacterial
expression host (Skretas and Georgiou, 2009). Hsp40 also acts
to regulate parts of the downstream signaling machinery.
Hsp40 complexes with Hsp90 in the study discussed in the
“Small GTPases” section that regulates access of a-GDP
dissociation inhibitor to the small GTPase Rab, regulating
the GTPase and thus signaling activity of this protein
(Sakisaka et al., 2002). Likewise, Hsp40 acts to regulate the
GTP hydrolysis rate of GaS proteins, through which Hsp40
could regulate a broad array of GPCR signaling (Gibbs et al.,
2009). Hsp40 was also shown to respond in a dynamic way to
chronic morphine treatment in the brain; Hsp40 was down-
regulated in the synapses whereas Hsp90 was upregulated,
and Hsp90 upregulation was involved by an unknown mech-
anism in the development of morphine dependence and
withdrawal (Abul-Husn et al., 2011). Another intriguing
experiment showed that Hsp40 acts as an adaptor protein to
form a trinary complex with Hsp70 and the urokinase re-
ceptor; this interaction facilitated receptor signaling and
subsequent changes in cell migration, invasion, and adhesion
(Lin et al., 2014).

Heat Shock Protein 27
Hsp27 is an important small Hsp that is perhaps best

known as a regulator of actin polymerization; it is phosphor-
ylated by kinases like mitogen-activated protein kinase–
activated protein kinase 2 (MAPKAP-K2) (Streicher et al.,
2010). Most Hsps like Hsp90 act in large part as multitarget
protein chaperones that regulate protein expression, function,
and localization; in contrast, Hsp27 appears to act as a more
traditional signal-transduction effector. It is phosphorylated
by kinases downstream of multiple identified receptors and
subsequently activates other signaling molecules or changes
cell physiology, as in its role in actin polymerization. It has
been identified in numerous cell processes, with an identified
role particularly in promoting cancer cell survival. The above
general information is reviewed in Singh et al. (2017). Hsp27 has
been particularly linked to tumor growth factor (TGF)-b receptor
stimulation; Hsp27 was found to be responsible for cisplatin
resistance and lung cancer cell survival subsequent to TGF-b
treatment (Huang et al., 2017). Hsp27was also found to regulate
lung fibroblast differentiation in response toTGF-b viaactivation
of Smad3 and ERK-MAPK (Wang et al., 2017). Other receptor
systems have also been implicated in Hsp27 signaling: These
include the membrane-associated androgen receptor (Li et al.,
2018) and endothelin-1 stimulation (Fujita et al., 2018). Hsp27
has further been implicated in different physiologic processes
downstream of these receptors. These include chemokine (C-C
motif) ligand 2–induced platelet function (Liu et al., 2018),
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tumor necrosis factor a–induced myofibroblast migration
(Saini et al., 2016), A1 adenosine receptor–induced protection
against intracerebral hemorrhage (Zhai et al., 2016), and
intestinal epithelial cell cytoprotection after exposure to the
bacterial chemotactic peptide fMLP (Carlson et al., 2007). A
number of papers have also linked Hsp27 to the b2-adrenergic
receptor and its downstream signaling regulator b-arrestin 2;
stimulation of this receptor led to Hsp27 induction, which
can be cytoprotective in both brain and heart (Imura
et al., 1999; Rojanathammanee et al., 2009; Xu et al.,
2011; Martínez -Laorden et al., 2012). Care must be taken in
interpreting these results, however, in that b2-adrenergic
stimulation can lead to pathophysiology such as cardiomyop-
athy (Xu et al., 2011), and some of the above studies did not
disentangle the potential protective effects of Hsp27 induction
from the harmful effects observed with b2-adrenergic stimu-
lation. Finally, Hsp27 has been linked to some of the other
molecular signaling cascades discussed in the above sections.
In particular, the small GTPase Ras was found to block
activation of Hsp27 via reducing p38 MAPK stimulation after
VEGF activation (Sawada et al., 2015). Overall, these findings
indicate that Hsp27 has an important role in the regulation of
receptor signal transduction via a mechanism distinct from
the other Hsps discussed above.

Conclusions and Future Directions
The literature review here is not comprehensive and is

merely meant to give a general overview and selection of the
impact of Hsps on signal transduction. The literature on these
central cell regulators is extensive and covers hundreds of
client proteins, receptor systems, and physiologic contexts.
The literature on these regulators will continue to grow, aided
by the extensive efforts to develop different Hsp and cochaper-
one inhibitors for cancer and other therapies. What is clear is
that these proteins have an enormous role in regulating signal
transduction, which will give us important avenues to manip-
ulate different receptor systems to achieve improved thera-
peutic outcomes.
In one sense, the Hsps are not good drug targets, owing to

their numerous client interactions, ubiquity, and high level of
expression. Despite these apparent limitations however, Hsp
inhibitors are surprisingly well tolerated. In the case ofHsp90,
although it is true that early geldanamycin derivatives failed
clinical trials owing to liver toxicity, this effect has not been
seen with newer generations of inhibitors, suggesting the
early toxicity was drug- and not target-related (McConnell and
McAlpine, 2013; Jhaveri et al., 2014; Sidera and Patsavoudi,
2014). In particular, the newest class of Hsp90 inhibitors are
derived from a novobiocin scaffold and target the C-terminal
region instead of the ATP binding pocket; these inhibitors
show a prosurvival effect in neurons with beneficial effects in
chronic neuropathic pain with low or no toxicity, pointing the
way to new and effective Hsp therapeutics (Burlison et al.,
2006; Ansar et al., 2007; Lu et al., 2009; Urban et al., 2010;
Samadi et al., 2011).
Another method to effectively target the Hsps is demon-

strated by Gestwicki and colleagues, who selectively targeted
the cochaperone interactions of Hsp70 in cataract models to
more specifically and selectively modulate Hsp proteins
(Assimon et al., 2013; Assimon et al., 2015). Along these lines,
Brian Blagg and colleagues have pioneered the development

of isoform-selective Hsp90 inhibitors (Tash et al., 2008; Liu
et al., 2015; Mishra et al., 2017), and Blagg and others have
developed cochaperone-selective inhibitors like celastrol and
gedunin (Brandt et al., 2008; Zhang et al., 2008). These
approaches may reduce side effects and increase tolerability
of Hsp-directed therapies by targeting the specific regulators
of the Hsp machinery more selectively by tissue distribution
and signaling process.
A more complete understanding of the role of Hsps in

regulating different aspects of receptor signaling will increase
our understanding of these crucial cell regulators and will also
provide more targets for new therapies. The new drug
approaches highlighted above combined with other potential
drug therapies, such as biased agonism (Urban et al., 2007),
may provide new means to use this knowledge to our advan-
tage. These opportunities will only increase as the literature
on Hsp regulation of signal transduction grows.
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